BPW Agrar Katalog Growing together

DE

Growing together all year long

Die Landwirtschaft ist unsere Leidenschaft. Wir kennen die Herausforderungen der Agrarbranche und die Bedürfnisse der Agrarunternehmer und wissen: Nachhaltigkeit ist nur durch harte Arbeit und innovative Lösungen zu erreichen. Deshalb konzentrieren wir uns auf die Entwicklung von vollendeten Produkten. Wir sind der festen Überzeugung, dass ein zielbewusster Mensch und eine perfekt auf ihre Arbeit abgestimmte Maschine eine Einheit bilden können, für die nichts unmöglich ist..

Mit BPW Achsen kann jeder große Plan vollständig verwirklicht werden.

Als Mitglied der deutschen BPW Gruppe und Teil der Maschinenindustrie von Westungarn sind wir der Zuverlässigkeit, Qualität und Kontinuität verpflichtet. Bei der Entwicklung unserer Produkte beziehen wir außer unseren Fachkenntnissen aus mehreren Jahrzehnten auch die aktuellen technischen Fortschritte und die modernsten Herstellungsmethoden mit ein. Dadurch stellen wir für unsere Kunden deutsche Qualität sowie die Nutzung der besten und zuverlässigsten Arbeitsmittel sicher.

www.bpwagrar.com www.bpw-hungaria.hu

Vorwort

Wir sind stolz darauf, dass wir in unserem Unternehmen Achsen herstellen, die zu den zuverlässigsten der Welt zählen. «

Péter Mándli Geschäftsführer BPW-Hungária Kft.

Wo auch immer wir auf der Welt leben, unser Leben ist bunt und voller Herausforderungen. Wir alle suchen nach den besten Wegen, um auf diese Herausforderungen zu reagieren. Dies gilt sowohl für unser Privatleben als auch für unser Arbeitsumfeld. Die Anforderungen können nicht im Voraus definiert werden, sie können einfach oder auch vielfältig sein. Unser Alltag wird durch die Vergangenheit geprägt, was wiederum unsere Zukunft beeinflusst. Während unseres gesamten Lebens entwickeln wir immer neue Herangehensweisen an unsere Aufgaben. Den Herausforderungen der Zukunft können wir nur mit effektiven Lösungen begegnen.

Eine der wichtigsten Komponenten des Anhängers ist die Achse. BPW steht in der Herstellung dieses Produktes seit über 120 Jahren an der Spitze. Wir sind stolz darauf, dass wir in unserem Unternehmen Achsen herstellen, die zu den zuverlässigsten der Welt zählen. Mit meinen Kollegen arbeite ich jeden Tag daran, dieses Erbe zu bewahren und die Zufriedenheit unserer Partner weiter auszubauen.

Wir streben stets eine langfristige Zusammenarbeit mit unseren Kunden an und entwickeln je nach Bedarf maßgeschneiderte Lösungen, die durch innovative Ideen überzeugen und beweisen, wie gut wir mitdenken können.

In diesem Katalog stellen wir Ihnen unsere neuesten Entwicklungen vor. Für eine bessere Übersichtlichkeit haben wir die Produkte konkreten Einsatzgebieten und somit den spezifischen Bedürfnissen unserer Kunden zugeordnet.

Ich bin zuversichtlich, dass Sie in diesem Katalog alle wichtigen Informationen finden werden, und hoffe, Sie bald persönlich im Kreis unserer zufriedenen Kunden begrüßen zu dürfen.

Mit freundlichen Grüßen

Péter Mándli Geschäftsführer BPW-Hungária Kft.

EINLEITUNG

	Anwendungsmatrix	10
	Typenbezeichnungen	12
	Wie wählt man eine Achse	14
	Wie wählt man ein Aggregat	16
	Achslastdiagramme	18
	Bremsen, Bremsenzulassungen	24
ACHSEN	bremsen, bremsenzatussungen	2-
АСПЭЕН		
	Vorteile für Achsen	30
	Laufachsen	32
	Bremsachsen mit Massivachskörper	34
	Bremsachsen mit Hohlachskörper	36
	Achsen mit Rückfahrautomatik	40
	Vorteile für Auflaufeinrichtungen	42
	Auflaufeinrichtungen	41
	Vorteile für Lenkachsen	46
	Lenkachsen	50
	AGRO Drive	56
	Anwendungsspezifische Lösungen	58
AGGREGATE	7ondungsopoznicono zodangen	
AUUNLUATL		
	Verbundaggregate	62
	Boogieaggregate	68
	Pendelaggregate	74
	AGRO Robust	80
	Luftfederaggregate	82
	Hydropneumatische Aggregate	88
	AGRO FlexModul	96
	AGRO FlexFrame	98
SENSORTECHNIK		
CENTONITECTION	5 · · · · · · · · · · · · · · · · · · ·	4.6
	Entwicklung Elektronik und Mechatronik	1(
	Radsensoren	1(
	Lenkwinkelsensor	1(
	AGRO Hub	11
TECHNIK UND SUPPORT		
	Alleinstellungsmerkmale	11
	Dienstleistungen	11
	Montageanweisungen, Schweißrichtlinien	12
	Bremszylinder	12
	MLB	12
	Marken der BPW Gruppe	12
	BPW Weltweit	13
	DE AA AAGEEMEIE	l c

Anwendungsmatrix

Maßgeschneiderte Lösungen

Wir sehen uns nicht als Lieferanten, sondern als Partner. Deshalb unterstützen wir Sie bereits in sehr frühen Phasen der Fahrzeugentwicklung mit unserem Wissen bei der Auswahl der passenden Komponenten.

Mit langjährigen Erfahrungen in der Fahrwerktechnik bietet BPW für alle Anwendungsbereiche überzeugende Lösungen unter Berücksichtigung der Ansprüche der Kunden.

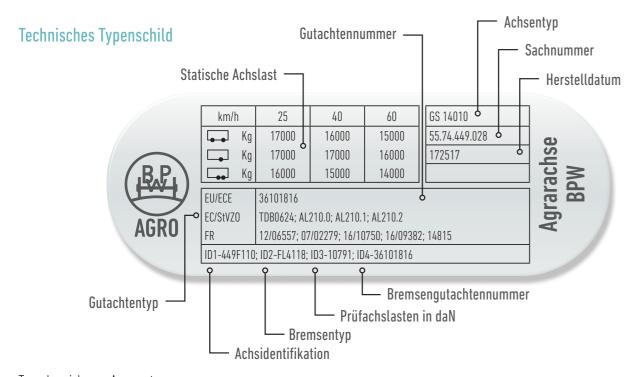
Em	pfehlungsgrad:	,

basiert auf BPW Know-how, Einsatzbereich, Geländebedingungen und Wirtschaftlichkeit

1	*
2	**
3	***
4	****
5	****

Abbildung	Fahrzeug
0000	Kipper
000	Muldenkipper
	Abschiebewagen
000	Ladewagen
00	Überladewagen
00 00	Ballentransportwagen
000	Ballenpressen
	Miststreuer
	Düngerstreuer
000	Güllewagen
	Feldspritzen
	Hakenliftanhänger
	Viehtransporter
	Futtermischwagen

		Zweiachser/Tan	idem/Tridem		
Seite 62-67	Seite 82—87	Seite 88—95	Seite 68—73	Seite 74—81	Ungefedert*
VB	Luft	НР	Boogie	Pendel	ongolozon.
5	4	1	_	3	5
3	_	5	4	5	_
3	4	5	2	_	1
2	4	5	3	_	5
3	4	5	_	_	5
4	5	_	_	_	_
3	-	-	5	4	5
3	5	4	5	_	5
3	-	5	4	_	5
1	4	5	3	5	5
_	5	4	_	_	3
_	4	5	_	_	_
4	_	_	-	-	5
4	_	_	_	_	5
_	_	-	_	4	5


^{*} Ungefederte Applikation, der Empfehlungsgrad bezieht sich auf den Fahrzeugtyp in einachsiger Ausführung.

10 | Einleitung

Typenbezeichnungen

Wenn die Daten sprechen

Jede BPW Achse wird mit einem Typenschild versehen. Es ist standardmäßig mittig am Achskörperentgegen der Fahrtrichtung – aufgeklebt. Die Angaben auf dem Typenschild ermöglichen jederzeit die richtige Identifizierung der kompletten Achse – dadurch auch die benötigter Verschleißteile – oder des dazugehörigen Bremsengutachtens. Alle Bremsengutachten können auf der BPW Agrar Website unter **www.bpwagrar.com** heruntergeladen werden.

Typenbezeichnung Aggregate

GS	BW		:2/	12010	-1	Beispiel
GS						GS-Achse (ohne Einpresstiefe)
GSN						GS-Achse (ohne Einpresstiefe) für 80 km/h
GSST						GS-Stummel (Agrar) max. 40 km/h (ohne Einpresstiefe)
	SLO					Luftfederaggregat, gerade Lenkerfeder auf der Achse montiert
	SLU					Luftfederaggregat, gerade Lenkerfeder unter der Achse montiert
	VB					Verbundaggregat
	BW					Boogieaggregat
	Р					Pendelachse bzw. Pendelachsstummel
	OH					mit hydropneumatischer Federung
		R				mit Rahmen
		LM				Nachlauflenkachse Typ LM
		LA				Einzylinderlenkachse Typ LA
		LL				Einzylinderlenkachse Typ LL
		L				Lenkachse Typ L (Zwangslenkung)
		LS				Lenkachsstummel
			:2/			Tandemachsaggregat
			:3/			Dreiachsaggregat
				5506-14010		Achslast und Anzahl der Radbolzen je Rad (letzte zwei Ziffern)
					-1	Ausführungsindex der Lagerung
					V	Verbundaggregat

Typenbezeichnung Achsen

G	S		LA	10010	-1	Beispiel
G						BPW Anhängerachse für landwirtschaftliche Fahrzeuge
GH						BPW AGRO Drive
	S					Einfachbereifung, Räder ohne Einpresstiefe
	В					Einfachbereifung, Räder mit Einpresstiefe
		N				Bremsachse für 80 km/h
		ST				Achsstummel
			LM			Nachlauflenkachse Typ LM
			LA			Nachlauflenkachse Typ LA
			LL			Nachlauflenkachse Typ LL
			L			Lenkachse Typ L (Zwangslenkung)
				11010		Achslast und Anzahl der Radbolzen je Rad (letzte zwei Ziffern)
					-1	Ausführungsindex der Lagerung

Sachnummerschlüssel Aggregate

56	88	01	0064	Beispiel
56				Agraraggregat
	63			GS 5506, GS 5508; Lager: 32207—32013x
	67			GS 7006, GS 7008; Lager: 30310—32014x
	70			GS 8008-3, GS 8010-3; Lager: 32213—32215
	72			GS 12010, GSN 12010; Lager: 33213—33118
	74			GS 14010; Lager: 32219—33215
	76			GS 9008, GS 9010; Lager: 32213—32215
	88			GS 11008-1, GS 11010-1; Lager: 32310A—33116
		01		Luftfederaggregat (Module)
		02		Luftfederaggregat mit Rahmen
		03		Verbundaggregat (Einzelachse)
		04		Verbundaggregat (Tandem, Tridem, mit Rahmen)
		05		Boogieaggregat
		06		Pendelaggregat
		07		Sonderaggregat
		08		hydropneumatisches Aggregat
			0001-9999	laufende Nummer

Sachnummerschlüssel Achsen

55	88	460	600	Beispiel
26/ 36				Agraranhängerachse, gelenkt
55				Agraranhängerachse, gebremst und ungebremst
58				Agrarachsstummel, gebremst und ungebremst
	53			GS 3606; Lager: 30206-30209
	56			GS 4006; Lager: 32207-30210
	63			GS 5506, GS 5508; Lager: 32207-32013x
	67			GS 7006, GS 7008; Lager: 30210-32014x
	70			GS 8008-3, GS 8010-3; Lager: 32213-32215
	72/77			GS 12010, GSN 12010; Lager: 33213-33118
	74			GS 14010; Lager: 32219-33215
	76			GS 9008, GS 9010; Lager: 32213-32215
	82/88			GS 11008-1; GS 11010-1; Lager: 32310-33116
		001		ohne Bremse
		381		Spreizhebelbremse S 3006-7
		443		Nockenbremse N 3006-3
		454		Nockenbremse N 3108-3
		449		Flügelnockenbremse FL 4118
		460		Flügelnockenbremse FL 4112
		461		Nockenbremse N 4008-4
		462		Nockenbremse N 4012-4
		463		Nockenbremse N 3411-1
		744		S-Nockenbremse SN 4220
			001-999	laufende Nummer

Typenbezeichnungen | 13

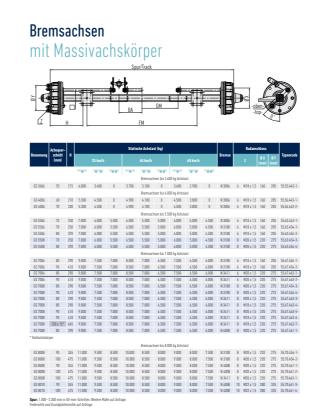
Wie wählt man eine Achse

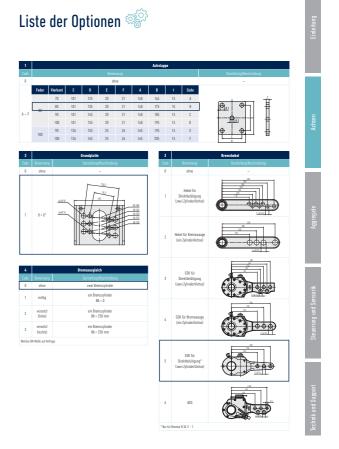
Ihre Achse, Ihre Entscheidung

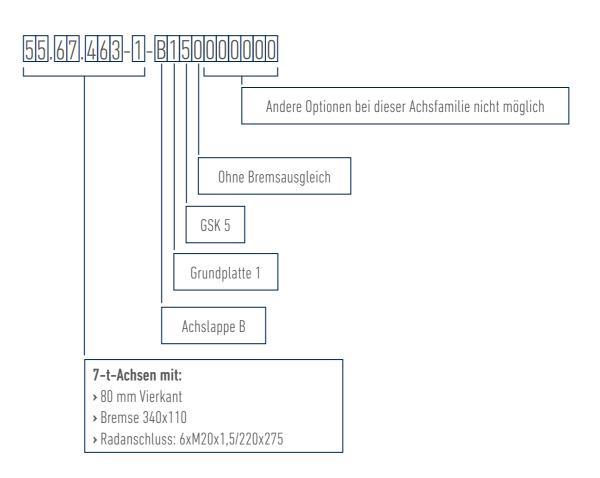
Dank unserem Baukastenprinzip haben Sie die Möglichkeit, den Aufbau der Achse von Anfang an so zu planen, dass sie perfekt auf Ihre Anforderungen abgestimmt ist.

Unser Kodierungssystem basiert auf der etablierten BPW Sachnummer. Zur Grundausführung gehört die Auszeichnung, ob man über eine Achse, ein Aggregat oder einen Stummel spricht, gefolgt vom Typ des Achskörpers mit dazugehöriger Lagerung und der Bremse.

Damit die Kodierungszeichen an sich verständlich sind, hängen wir ans Ende statt einer laufenden Nummer die Komponentenvariationen für Grundplatte, Bremsoptionen, Sensorik, usw. an.


Kodierung — Achsen


Liste der Optionen für Achsen


				Option	isnumme	r					
	XX.XX.XXX.	1	2	3	4	5	6	7	8	9	10
Benennung	Sachnummerbeispiel	Achslappe	Grundplatte	Bremshebel	Bremsausgleich	RDS	Zwillingsbereifung	SDS/ABS-Sensor	Lenkwinkelsensor	Zentralschmieranlage	spezielle Dichtung
Laufachse	55.67.001.	Χ	0	0	0	Χ	Χ	Χ	0	0	Χ
Massiv	55.67.463.	Χ	Χ	Х	Χ	0	0	0	0	0	0
Hohl	55.77.449.	Χ	Χ	Χ	0	Χ	Χ	Χ	0	0	0
Lenkachse	36.77.449.	Χ	Χ	Х	0	Χ	Χ	Χ	Χ	Χ	0
Rückfahrautomatik	55.63.381.	Χ	0	Χ	Χ	0	0	0	0	0	0

X = Option ist möglich

Beispiel für Kodierung

14 | Einleitung

^{0 =} Option ist nicht möglich

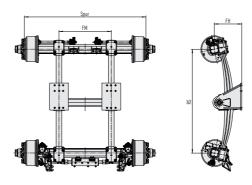
Wie wählt man ein Aggregat

Ihre Aggregate, Ihre Entscheidung

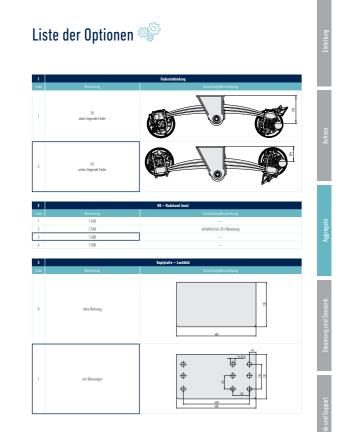
Die Aggregate sind mit allen Federungsmöglichkeiten ausgestattet.

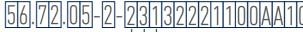
Hinter den anwendungsspezifischen Lösungen steht die jahrzehntelange Erfahrung, die es Ihnen ermöglicht, sich mit unserem Baukastenprinzip Ihr Aggregat leicht selbst zusammenzustellen.

Kodierungssystem basiert – wie bei den Achsen – auf der traditionellen BPW Sachnummer.


Kodierung — Aggregate Liste der Optionen für Aggregate

					Optior	ısnum	mer									
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Benennung	Sachnummerbeispiel	Federeinbindung/Federtyp	Radstand/Liftachse/Zylinderposition	Lochbild/Flachrahmen	Fahrhöhe	Spezielle Option	Ausführungen	Lenkachse	Bremshebel	Zwillingsbereifung	RDS	SDS/ABS-Sensor — Starrachse	SDS/ABS-Sensor — Lenkachse	Lenkwinkelsensor	Zentralschmieranlage	Bremszylinder
Verbundaggregat	56.72.04	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
Boogieaggregat	56.72.05	χ	Χ	χ	Χ	0	Χ	χ	χ	χ	χ	χ	χ	χ	χ	χ
Pendelaggregat	56.72.06	0	Χ	χ	0	χ	Χ	χ	0	χ	χ	χ	χ	χ	χ	Χ
Luftfederung	56.72.01	χ	χ	χ	χ	0	χ	χ	χ	χ	χ	χ	χ	χ	χ	Χ
Hydropneumatische Federung	56.72.08	Χ	χ	Χ	Χ	Χ	Χ	χ	χ	χ	Χ	Χ	Χ	Χ	χ	χ


X = Option ist möglich


Beispiel für Kodierung

Doppelachsaggregat

	Achsquerschnitt	Achsquerschnitt	Statische Ag	pregatlast (kg)			
Achsentyp	sentyp Verderachse (mm) Verderachse (mm) 40 km/h		60 km/h	Bremse	Radanschluss	Typencode	
				SSBW (LA) 7006/7008*			
GSBW 7006	90	90	13.000	12.000	ungebremst	6 x M18 x 1,5 - 160/205	56.67.05-1-
GSBW 7006	90	90	13.000	12.000	N 3411	6 x M18 x 1,5 - 160/205	56.67.05-2-
GSBW 7008	90	90	13.000	12.000	ungebremst	8 x M20 x 1,5 - 220/275	56.67.05-3-
GSBW 7008	90	90	13.000	12.000	N 3411	8 x M20 x 1,5 - 220/275	56.67.05-4-
				SSBW (LA) 9008/9010*			
GSBW 9008	110 x 14	110 x 14	17.000	16.000	ungebremst	8 x M20 x 1,5 - 220/275	56.76.05-1-
GSBW 9008	110 x 14	110 x 14	17.000	16.000	N 3411-1	8 x M20 x 1,5 - 220/275	56.76.05-2-
GSBW 9008	110 x 14	110 x 14	17.000	16.000	N 4012-4	8 x M20 x 1,5 - 220/275	56.76.05-3-
GSBW 9010	110 x 14	110 x 14	17.000	16.000	ungebremst	10 x M22 x 1,5 - 280/335	56.76.05-4-
GSBW 9010	110 x 14	110 x 14	17.000	16.000	N 4012-4	10 x M22 x 1,5 - 280/335	56.76.05-6-
			6	SBW (LA) 11008/11010			
GSBW 11008	120 x 10(15)	120 x 10(15)	20.000	18.000	ungebremst	8 x M20 x 1,5 - 220/275	56.88.05-1-
GSBW 11008	120 x 10(15)	120 x 10(15)	20.000	18.000	N 4812	8 x M20 x 1,5 - 220/275	56.88.05-2-
GSBW 11008	120 x 10(15)	120 x 10(15)	20.000	18.000	FL 4112	8 x M20 x 1,5 - 220/275	56.88.05-3-
GSBW 11010	120 x 10(15)	120 x 10(15)	20.000	18.000	ungebremst	10 x M22 x 1,5 - 280/335	56.88.05-4-
GSBW 11010	120 x 10(15)	120 x 10(15)	20.000	18.000	N 4812	10 x M22 x 1,5 - 280/335	56.88.05-5-
GSBW 11010	120 x 10(15)	120 x 10(15)	20.000	18.000	FL 4112	10 x M22 x 1,5 - 280/335	56.88.05-6-
GSBW 11010	120 x 10(15)	120 x 10(15)	20.000	18.000	FL 4118	10 x M22 x 1,5 - 280/335	56.88.05-7-
				GSBW (LL) 12010			
GSBW 12010	150 x 10(16)	150 x 10(16)	26.000	24.000	ungebremst	10 x M22 x 1,5 - 280/335	56.72.05-1-
GSBW 12010	150 x 10(16)	150 x 10(16)	26.000	24.000	FL 4118	10 x M22 x 1,5 - 280/335	56.72.05-2-

Weitere ausgewählte Optionen

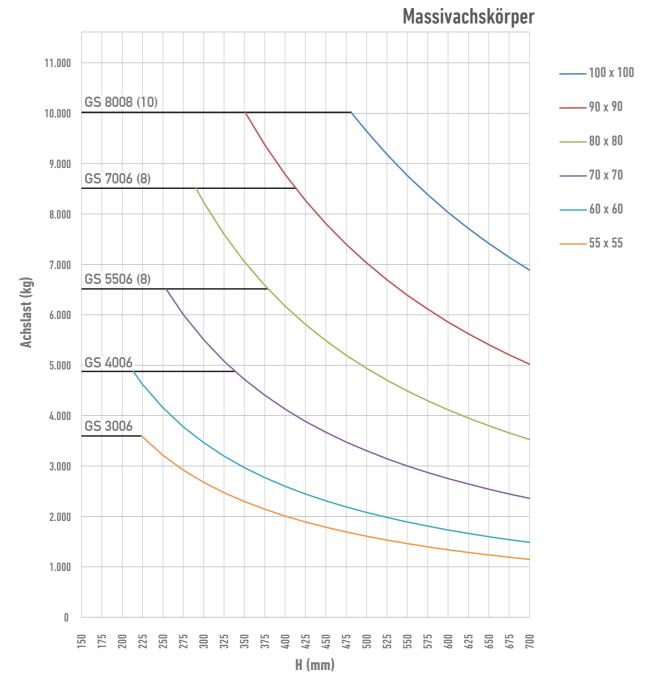
Kopfplatte mit Bohrung

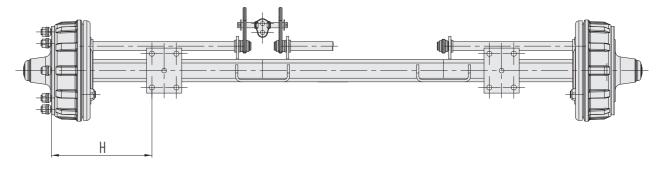
Radstand 1600

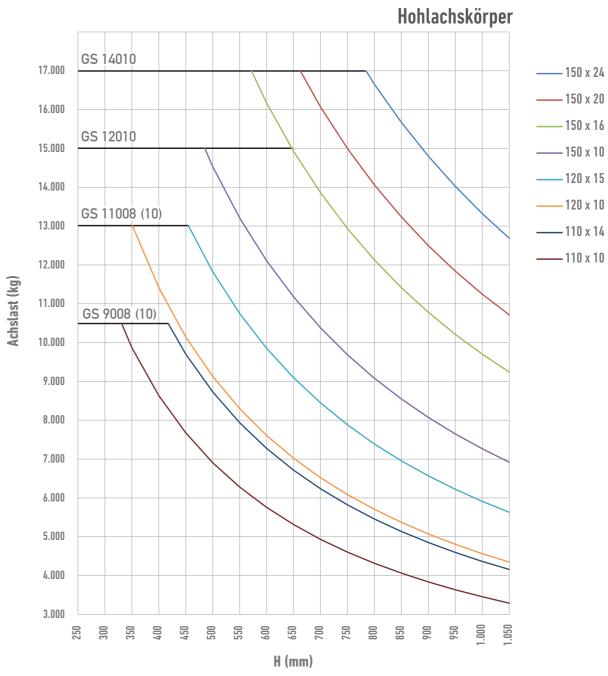
Untere Achseinbindung

Untere Achseinbindung

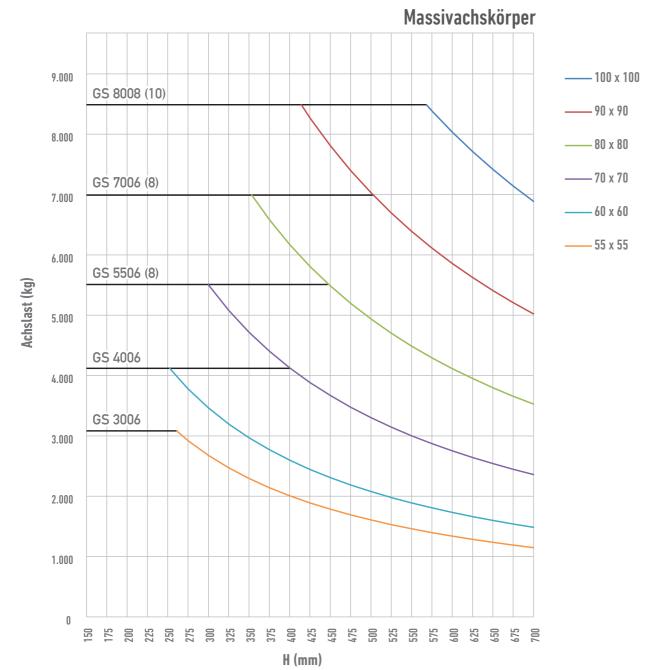
> GSBW 12010
> Bremse 410 x 180
> Tragfähigkeit max. 26 t

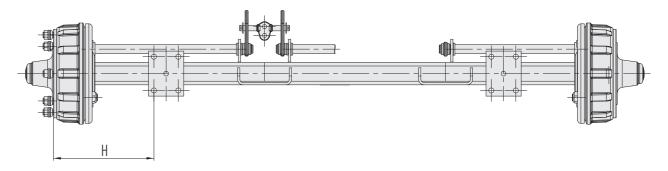

^{0 =} Option ist nicht möglich

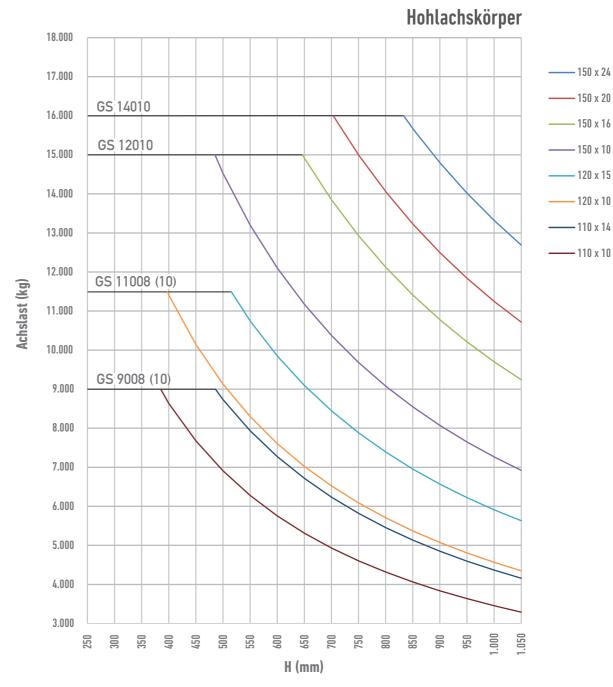

Achslastdiagramme


für Massiv- und Hohlachskörper

Zulässige statische Achslasten




Achslastdiagramme


für Massiv- und Hohlachskörper

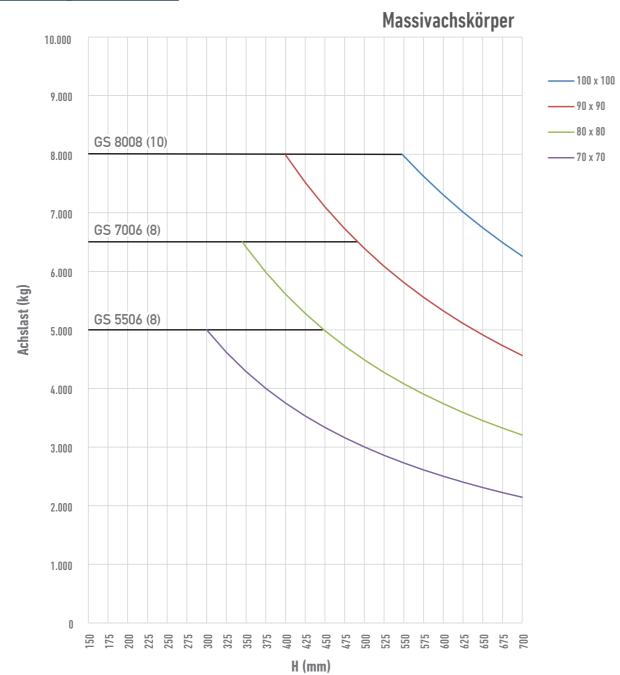
Zulässige statische Achslasten

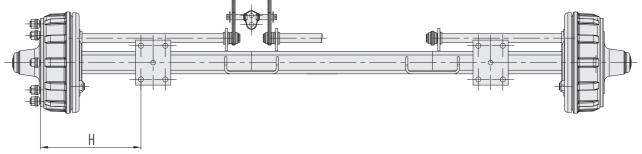
— 150 x 24

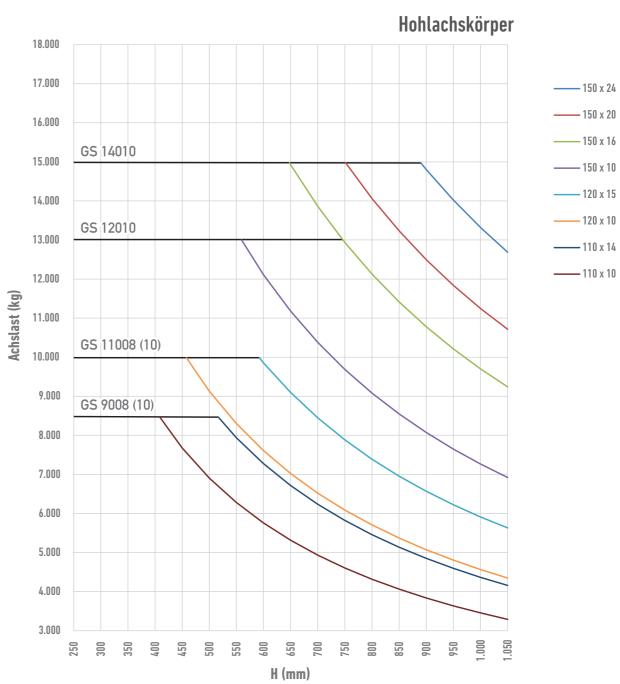
- 150 x 20

— 150 x 16

— 150 x 10 - 120 x 15


— 120 x 10


Achslastdiagramme


für Massiv- und Hohlachskörper

Zulässige statische Achslasten

Bremsen

Bewährt unter härtesten Bedingungen

Für jeden Einsatz bietet BPW die passende Bremse. In unserem Testlabor entwickelte und getestete Bremsen gewährleisten konstante Bremswirkung und kurze Ansprechzeit für gezogene Fahrzeuge. Ob nach den Vorgaben von EU 2015/68, ECE, EG, StVZO oder Sonderregelungen aus Frankreich – BPW bietet zu allen Bremsenausführungen die entsprechenden Gutachten und Prüfprotokolle an.

Bremseigenschaften

Typ der Radbremse	Bremsengröße (mm)	Felgendurchmesser	Trommelaußenbreite ø	Erreichbare Hebel
N 3006-3	300 x 60	15"	332	H-G-A
N 3108-3	310 x 80	15"	360	H-G-A
N 3411	340 x 110	17"	390	G-A
N 4008-4	400 x 80	19,5"	440	H-G
N 4012-4	400 x 120	19,5"	456	G-A
FL 4112	410 x 120	20,5" (20"*)	473	G-A
FL 4118	410 x 180	20,5" (20"*)	478	G-A
SN 4220	420 x 200	20,5" (20"*)	480	G-A

H = einfache Hebel

EU/ECE-Prüfprotokolle

D . 100	Bremsengröße		Prüfung	sachslast	"Prüfberichtsnummer	Dyn. Rad	lius [mm]			
Bremsentyp ID2	(mm)	Achstyp ID1	ID3 [daN]	[kg]	Hauptteil ID4"	Geprüft	Zulässig >=	Тур		
N 3006-3	300 x 60	443F40	3.924	4.000	B11922A	408	326.4	(EU) 2015/68		
N 3108-3	310 x 80	454F50	4.905	5.000	B11921A	438	350.4	(EU) 2015/68		
N 3100-3	310 X 00	5.886 6.000		400	330.4	(LU) 2013/00				
N 3411	340 x 110	463F85	8.339	8.500	B11912A	410	328	(EU) 2015/68		
N 4008-4	400 x 80	461F70	6.867 7.000 461F70 B11898A		475	380	(EU) 2015/68			
N 4000-4	400 X 00	4017/0	7.848	8.000	D11070A	4/0	300	(EU) 2013/00		
N 4008-4	400 x 80	GS 70	6.867	7.000	TDB 0833	503	402.4	ECE R 13		
N 4012-4	400 x 120	462F90	8.829	9.000	B11419A	552	441.6	(EU) 2015/68		
N 4012-4	400 X 120	402170	10.300	10.500	D11417A	475	380	(EU) 2013/00		
FL 4112	410 x 120	GS90	9.810	10.000	36110415	519	415.2	(EU) 2015/68		
FL 4118	410 x 180	449F110	10.791	11.000	36101816	527	421.6	(EU) 2015/68		
FL 4118BB	410 x 180	464F120	11.772	12.000	36105217	527	421.6	(EU) 2015/68		
SN 4220	420 x 200	H 142	13.930	14.200	TDB 0137	543	434.4	ECE		
S 3006-7 Spreizhebelbremse	300 x 60		Prüfprotokoll-Nr.: 36102717; zulässige "Höchstmasse" pro Achse: 4.000 kg							

EG-Prüfprotokoll für $v \ge 25 \text{ km/h}$

Typ der	Bremsengröße	Prüflast	Zulässige	Geprüfte Reifenausführung		Dyn. Rad	lius (mm)	Prüfprotokoll-	T
Radbremse	(mm)	(kg)	Achslast (kg)			Geprüft	Zulässig >=	nummer	Тур
N 2007 2	300 x 60	2.000	2.000	205 R 14 C	Zwilling	332	265,6	TDB 0403	EG
N 3006-3	300 X 60	3.800	3.800	8,5 R 17,5	Einfach	388	310,4	TDB 0410	ĽÜ
N 3108-3	310 x 80	6.000	6.000	7,5 R 15	Einfach	371	296,4	TDB 0364	EG
N 3108-3	310 X 80	0.000	0.000	8,25 R 20	Einfach	471	376,8	100 0304	Ľΰ
N 4008-4	400 x 80	7.000	7.000	14/80 R20	Einfach	543	434,4	TDB 0833	EG
FL 4112	410 x 120	10.000	10.000	14,5 R 20	Einfach	527	421,6	TDB 0680	EG
				385/65 R 22,5	Einfach	519	415,2		
FL 4118	410 x 180	11.000	11.000	700/50 R 22,5	Einfach	594	475,2	TDB 0624	EG
				500/75 R 24	Einfach	653	522,4		

StVZO-Prüfprotokoll für v ≤ 25/40 km/h

Typ der	Bremsengröße	Prüflast	Zulässige	Zulässige Geschwindigkeit		Reifenhalbn	nesser (mm)	
Radbremse	(mm)	(kg)			(km/h)		Max.*	Prüfprotokollnummer
N 3006-3	300 x 60	6.000	6.000	v <= 25	-	330	450	AL 180.0
N 3108-3	310 x 80	8.000	8.000	v <= 25	-	330	630	AL 192.0
N 4008-4	400 x 80	8.000	8.000	v <= 25	-	380	631	AL 318.1
		8.000	8.000	v <= 25	-	650	950	AL 224.0
FL 4112	410 x 120	13.000	13.000	v <= 25	-	420	650	AL 224.1
		10.500	10.500	-	v <= 40	420	650	AL 224.2
		15.000	15.000	v <= 25	-	420	800	AL 210.0
FL 4118	410 x 180	12.000	12.000	-	v <= 40	590	800	AL 210.1
		13.500	13.500	-	v <= 40	420	650	AL 210.2

^{*} Weitere Reifenhalbmesser sind nach rechnerischer Überprüfung möglich

Prüfprotokolle nach Frankreich für v ≤ 40 km/h

Typ der	Bremsengröße	Prüflast	Zulässige	Geprüfte	Außendurch	messer (mm)	Betätigung	Prüfprotokoll-
Radbremse	(mm)	(kg)	Achslast (kg)	Reifenausführung	Geprüft	Geprüft Zulässig >=		nummer
N 3006-3	300 x 60	3.800	3.800	12,5/80—15,3	897	718	Druckluft	07/02276
N 2000-2	200 X 00	3.000	3.000	12,3/00—13,3	07/	/10	Hydraulik	07/10272
N 0100 0	010 00	/ 000	/ 000	10 5/00 15 0	897	718	Druckluft	07/02277
N 3108-3	310 x 80	6.000	6.000	12,5/80—15,3	897	/18	Hydraulik	07/10273
N / 000 /	/ 00 00	7,000	7,000	/00/F0 00 F	1 170	000	Druckluft	07/06745
N 4008-4	400 x 80	7.000	7.000	600/50—22,5	1.172	938	Hydraulik	08/06746
FL /110	/10 100	10.500	10 500	/00/E0 22 E	1.172	938	Druckluft	07/02281
FL 4112	410 x 120	10.500	10.500	600/50—22,5	1.1/2	938	Hydraulik	07/02282
		10.000	10.000	(00/50, 22.5	1 170	000	Druckluft	07/02279
FL 4118	410 x 180	12.000	12.000	600/50—22,5	1.172	938	Hydraulik	07/02280
		13.000	13.000	600/50—22,5	1172	937,6	Druckluft	12/06557
FL 4112	410 x 120	11.200	11.200	600/50—22,5	1172	937,6	Druckluft	15/08938

24 | Einleitung

G = GSK (Gestangeställer)

A = AGS (automatische Gestangeställer)

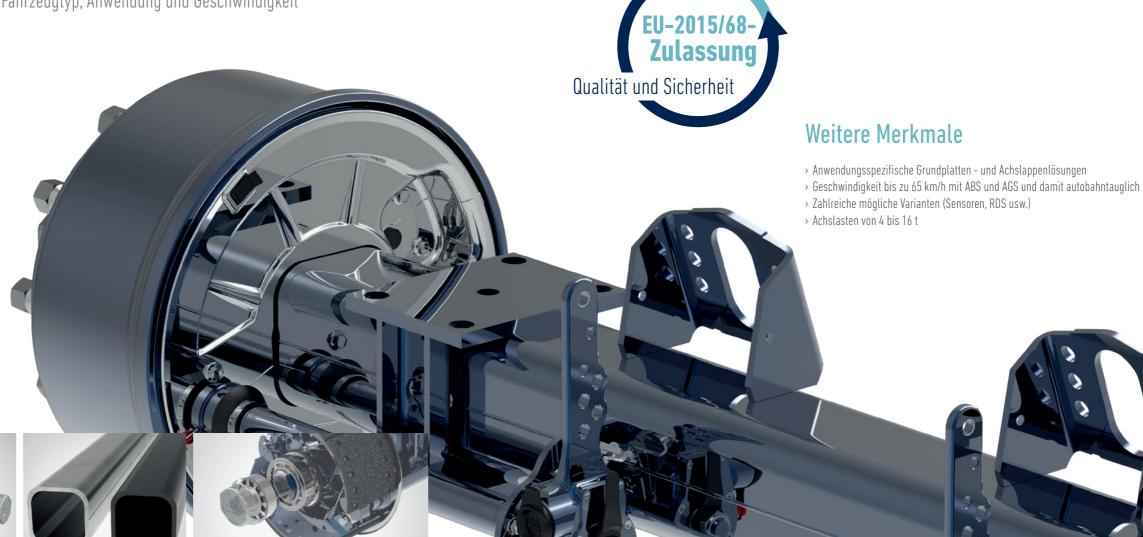
^{*} Muss geprüft werden.

Prüfprotokolle nach Frankreich für v ≤ 25 km/h

				Reifenhalbmesser (mm)			
Typ der Radbremse	Bremsengröße (mm)	Prüflast (kg)	Zulässige Achslast (kg)	Min.	Max.	Prüfprotokollnummer	
N 3006-3	300 x 60	6.000	6.000	330	450	13124	i
N 3000-3	300 X 00	8.000	8.000	320	450	14762	
N 3108-3	310 x 80	8.000	8.000	330	630	12436	
N 3411-1	340 x 110	17.000	17.000	330	910	19/04364	
N 4008-4	400 x 80	12.000	12.000	380	890	15735	
N 4008-4	400 x 80	14.000	14.000	360	910	17/03930	
N 4012-4	400 x 120	17.000	17.000	360	910	17/03929	
EL /119	/10 120	10.000	10.000	420	650	12713	
FL 4112	410 x 120	13.000	13.000	420	970	12870	
FL 4112	410 x 120	17.000	17.000	360	910	16/09381	
FL /110	/10 100	15.000	15.000	420	800	12765	
FL 4118	410 x 180	15.000	15.000	420	970	14815	
FL /110	/10 100	17.000	17.000	0/0	070	16/09382	
FL 4118	410 x 180	17.000	17.000	360	970	16/10750	

	Radbremsengröße		Prüfl	ast PE pro Radbre	mse (kg)	Reifenhalbı	nesser (mm)		
Typ der Radbremse	(mm)	Ausführung	Bis 25 km/h	Bis 40 km/h	Bis 60 km/h	Min.	Max.	Gutachtennummer	
S 3006-7	300 x 60	RASK	3.000	2.000	-	330	480	F 1330	
S 3006-7	300 x 60	RASK	-	-	1.500	310	440	F 1330	
S 3006-7	300 x 60	RAZG	3.000	2.000	-	330	480	F 1331	
S 3006-7	300 x 60	RAZG	-	-	1.500	310	440	F 1331	
S 3006-7	300 x 60	-	-	-	-	-	-		

Sensortechi


nik und Sunnort

Bremsachsen

Sicherheit im Vordergrund

Mit einer Vielzahl von Achslasten und unterschiedlichen Bremsen decken BPW Achsen alle möglichen Einsatzfälle ab. Abhängig von Fahrzeugtyp, Anwendung und Geschwindigkeit sind sie auf bis zu 80 km/h ausgelegt.

Vorteile, die überzeugen

Bremsen

- > Höchste Zuverlässigkeit dank verstärktem Achsquerschnitt
- > Bietet Ihren Fahrzeugen große Stabilität

Hohlachskörper

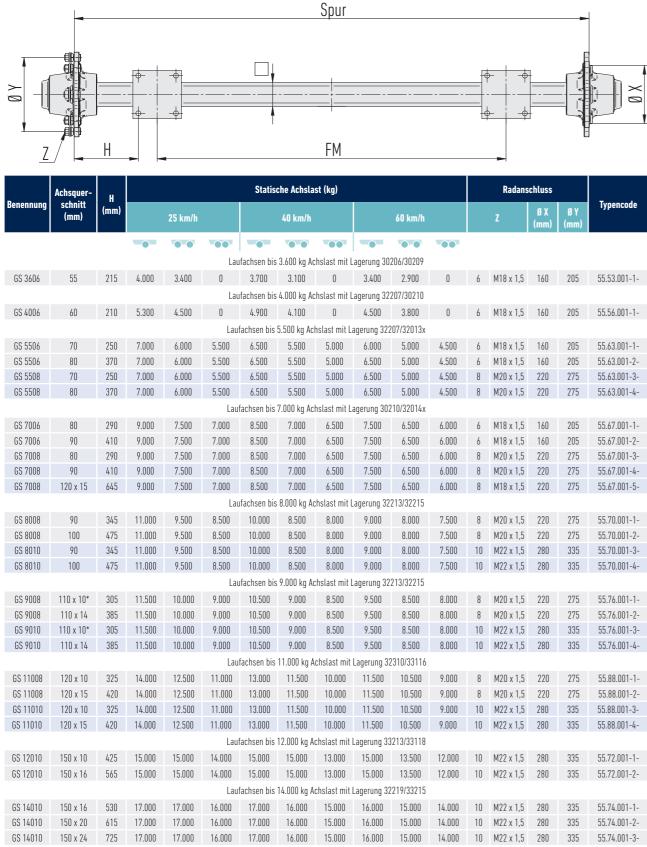
- > Große Sicherheitsreserven im Fall einer kurzfristigen und extremen Überlastung
- > BPW Bremsen nach EU 2015/68 zugelassen
- > Konstante Bremswirkung und dadurch mehr Sicherheit in der Praxis
- > Exakt nach Maß und Form kalibrierter Belag
- > Reduzierter Verschleiß, niedrige Lebenszykluskosten

> Sie profitieren von einer langen Nutzungsdauer dank einem

KTL-Beschichtung

- Korrosionsschutz, der fünfmal so hoch ist wie bei herkömmlichen Lackierverfahren
 - > Ihr Wartungs- und Reparaturaufwand wird dank dem flächendeckenden Korrosionsschutz deutlich reduziert
 - Schutz gegen Steinschlag oder Splitt
 - > Längere Lebensdauer des kompletten BPW Fahrwerks

Genießen Sie eine stabile und sichere Fahrt auf der Grundlage von BPW Langzeitfahrversuchen und Dauertests


Lagersystem

- Lassen Sie Ihr Fahrzeug mit geringem Rollwiderstand und langer Lebensdauer rollen
- > Kurze Stillstandzeiten dank weltweit verfügbarer, nach DIN und ISO zertifizierter Kegelrollenlager und austauschbarer Dichtelemente

30 | Achsen

Laufachsen

mit Massiv- und Hohlachskörper

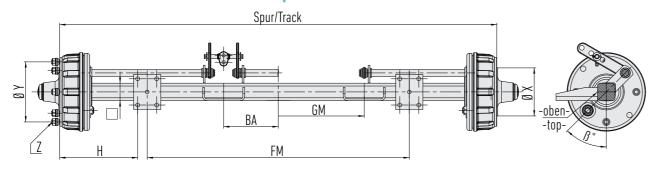
^{*}Für diese Ausführungen gilt nicht die Liste der Optionen. Optionen auf Anfrage.

Spur: 1.500—2.300 mm in 50-mm-Schritten. Weitere Maße auf Anfrage. Federmitte auf Anfrage.

1								Achslapp	en										
Code					Bene	nnung							Dars	Darstellung/Bes	Darstellung/Beschreib	Darstellung/Beschreibung	Darstellung/Beschreibung	Darstellung/Beschreibung	Darstellung/Beschreibung
0					oh	ine								_	_	_	_	_	_
A-F				Achslappe	n für Achsty	pen GS 3006	— GS 8010												
	Feder	Vierkant	C	D	E	F	A	В	t	Code									
		70	101	125	20	21	140	165	15	А			.					<u></u>	<u></u>
	80	80	101	135	20	21	140	175	15	В			⊕ _{ØF}	De O		D ₀ F D	<u>₱</u> ₽₽	⊕ _{ØF} ⊕ ⊟	
	OU	90	101	145	20	21	140	185	15	С			ل ا						
		100	101	155	20	21	140	195	15	D				MOE I	<u> </u>	<u> </u>	<u> </u>		MOE T
	100	90	126	155	25	26	165	195	15	Е			$ \oplus $						
	100	100	126	165	25	26	165	205	15	F			C	C A	C A	C A	C A	C	C
— K				Achslapper	für Achstyp	en GS 9008 -	– GS 14010												
	Feder	Vierkant	C	D	F	A	В	Code		Ø F	<u>-</u>	_	2 1						~ <u>~</u>
	80	120	101	155	21	140	195	G		+	1		9						
	100	120	125	150	26	175	200	Н			ф <u>а</u>								
	100	120	125	150	26	175	200	1		-	- -	<u>) E</u>	<u>) E</u>						
	100	150	125	180	25	170	220	J		P		P	- -						F
	100	150	125	180	25	170	220	K		-	A	 	-	-	-		- 	- - - -	-

Weitere Achslappen	auf Anfrage.
--------------------	--------------

5	Vorbereitung für Reifendruckregelsystem								
Code									
0	ohne	_							
1	mit	möglich nur bei Typen GS 11010 (8)/GS 12010/GS 14010							


6	Zwillingsbereifung						
0	ohne	_					
1	mit	möglich nur bei Typen GS 11010 (8)/GS 12010/GS 14010					

7	Sensor — SDS/ABS							
Code		Darstellung/Beschreibung						
0	ohne	-						
Ά-	mit	möglich nur bei Typen GS 11010 (8)/GS 12010/GS 14010						

10	Spezie	elle Abdichtung
Code		
0	ohne	_
1	mit	Abdichtung geeignet für schwierigen Einsatz

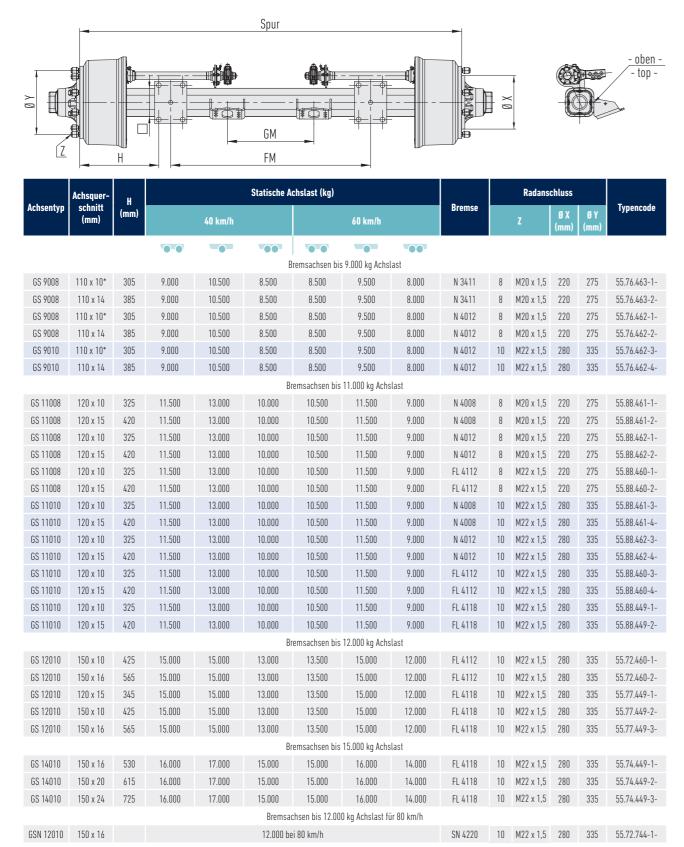
Bremsachsen

mit Massivachskörper

	Achsquer-					Statis	che Achsla	st (kg)					Radanschluss				
Benennung	schnitt (mm)	Н		25 km/h			40 km/h			60 km/h		Bremse		Z	Ø X (mm)	ØY (mm)	Typencode
							Bremsacl	nsen bis 3.6	00 kg Achsla	ast							
GS 3606	55	215	4.000	3.400	0	3.700	3.100	0	3.400	2.900	0	N 3006	6	M18 x 1,5	160	205	55.53.443-1-
							Bremsacl	nsen bis 4.0	00 kg Achsla	ast							
GS 4006	60	210	5.300	4.500	0	4.900	4.100	0	4.500	3.800	0	N 3006	6	M18 x 1,5	160	205	55.56.443-1-
GS 4006	70	330	5.300	4.500	0	4.900	4.100	0	4.500	3.800	0	N 3006	6	M18 x 1,5		205	55.56.443-2-
							Bremsacl	nsen bis 5.5	00 kg Achsla	ast							
GS 5506	70	250	7.000	6.000	5.500	6.500	5.500	5.000	6.000	5.000	4.500	N 3006	6	M18 x 1,5	160	205	55.63.443-1-
GS 5506	70	250	7.000	6.000	5.500	6.500	5.500	5.000	6.000	5.000	4.500	N 3108	6	M18 x 1,5	160	205	55.63.454-1-
GS 5506	80	370	7.000	6.000	5.500	6.500	5.500	5.000	6.000	5.000	4.500	N 3108	6	M18 x 1,5	160	205	55.63.454-2-
GS 5508	70	250	7.000	6.000	5.500	6.500	5.500	5.000	6.000	5.000	4.500	N 3108	8	M20 x 1,5	220	275	55.63.454-3-
GS 5508	80	370	7.000	6.000	5.500	6.500	5.500	5.000	6.000	5.000	4.500	N 3108	8	M20 x 1,5	220	275	55.63.454-4-
							Bremsacl	nsen bis 7.0	00 kg Achsla	ast							
GS 7006	80	290	9.000	7.500	7.000	8.500	7.000	6.500	7.500	6.500	6.000	N 3108	6	M18 x 1,5	160	205	55.67.454-1-
GS 7006	90	410	9.000	7.500	7.000	8.500	7.000	6.500	7.500	6.500	6.000	N 3108	6	M18 x 1,5	160	205	55.67.454-2-
GS 7006	80	290	9.000	7.500	7.000	8.500	7.000	6.500	7.500	6.500	6.000	N 3411	6	M20 x 1,5	220	275	55.67.463-1-
GS 7006	90	410	9.000	7.500	7.000	8.500	7.000	6.500	7.500	6.500	6.000	N 3411	6	M20 x 1,5	220	275	55.67.463-2-
GS 7008	80	290	9.000	7.500	7.000	8.500	7.000	6.500	7.500	6.500	6.000	N 3108	8	M20 x 1,5	220	275	55.67.454-3-
GS 7008	90	410	9.000	7.500	7.000	8.500	7.000	6.500	7.500	6.500	6.000	N 3108	8	M20 x 1,5	220	275	55.67.454-4-
GS 7008	80	290	9.000	7.500	7.000	8.500	7.000	6.500	7.500	6.500	6.000	N 3411	8	M20 x 1,5	220	275	55.67.463-3-
GS 7008	80	290	9.000	7.500	7.000	8.500	7.000	6.500	7.500	6.500	6.000	N 3411	8	M18 x 1,5	220	275	55.67.463-4-
GS 7008	90	410	9.000	7.500	7.000	8.500	7.000	6.500	7.500	6.500	6.000	N 3411	8	M20 x 1,5	220	275	55.67.463-5-
GS 7008	90	410	9.000	7.500	7.000	8.500	7.000	6.500	7.500	6.500	6.000	N 3411	8	M18 x 1,5	220	275	55.67.463-6-
GS 7008	120 x 15*	645	9.000	7.500	7.000	8.500	7.000	6.500	7.500	6.500	6.000	N 3411	8	M18 x 1,5	220	275	55.67.463-7-
GS 7008	80	290	9.000	7.500	7.000	8.500	7.000	6.500	7.500	6.500	6.000	N 4008	8	M20 x 1,5	220	275	55.67.461-1-
Hohlachskör	per.																
							Bremsach	nsen bis 8.0	00 kg Achsla								
GS 8008	90	345	11.000	9.500	8.500	10.000	8.500	8.000	9.000	8.000	7.500	N 3108	8	M20 x 1,5	220	275	55.70.454-1-
GS 8008	100	475	11.000	9.500	8.500	10.000	8.500	8.000	9.000	8.000	7.500	N 3108	8	M20 x 1,5	220	275	55.70.454-2-
GS 8008	90	345	11.000	9.500	8.500	10.000	8.500	8.000	9.000	8.000	7.500	N 4008	8	M20 x 1,5	220	275	55.70.461-1-
GS 8008	100	475	11.000	9.500	8.500	10.000	8.500	8.000	9.000	8.000	7.500	N 4008	8	M20 x 1,5	220	275	55.70.461-2-
GS 8008	100	475	11.000	9.500	8.500	10.000	8.500	8.000	9.000	8.000	7.500	N 3411	8	M20 x 1,5	220	275	55.70.463-1-
LC VIIIII	on .	3/. 6	7.1 (1111)	0 500	g 500	10 000	U LIIII	g nnn	0 000	g nnn	7 500	NI /LNNQ	111	MINITE	7,011	771	bb /// //1

GS 8010 100 475 11.000 9.500 8.500 10.000 8.500 8.000 9.000 8.000 7.500 N 4008 10 M22 x 1,5 280 335 55.70.461-4-

Spur: 1.500—2.300 mm in 50-mm-Schritten. Weitere Maße auf Anfrage. Federmitte und Grundplattenmitte auf Anfrage.


2		Grundplatte
	Benennung	Darstellung/Beschreibung
0	ohne	_
1	ß = 0°	120.7 76.2 192 HL180 HL150 HL150 HL120

4		Bremsausgleich
		Darstellung/Beschreibung
0	ohne	zwei Bremszylinder
1	mittig	ein Bremszylinder BA = 0
2	versetzt (links)	ein Bremszylinder BA = 250 mm
3	versetzt (rechts)	ein Bremszylinder BA = 250 mm
Weitere E	A-Maße auf Anfra	ige .

3		Bremshebel
Code	Benennung	Darstellung/Beschreibung
0	ohne	-
1	Hebel für Direktbetätigung (zwei Zylinder/Achse)	7200 700 180 145 155 120 7 x 0 14.5
2	Hebel für Bremswaage (ein Zylinder/Achse)	230 180 150 120 4 x 0 22
3	GSK für Direktbetätigung (zwei Zylinder/Achse)	180 165 150 135 120 5 x 0 14
4	GSK für Bremswaage (ein Zylinder/Achse)	180 150 120 3 x 0 23
5	GSK für Direktbetätigung* (zwei Zylinder/Achse)	180 150 120 3 x 8 14
6	AGS	1580 1580 1780 1580 1780 1580 1580 1580 1580 1580 1580 1580 15

Bremsachsen

mit Hohlachskörper

^{*}Für diese Ausführungen gilt nicht die Liste der Optionen. Optionen auf Anfrage.

Federmitte und Grundplattenmitte auf Anfrage.

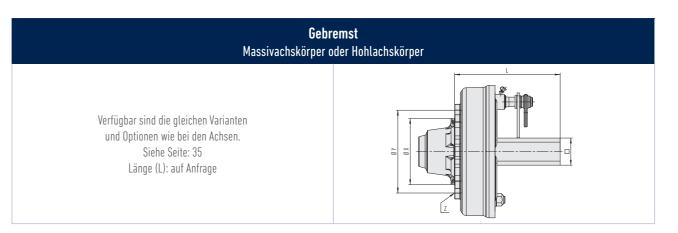
Die Achslasten sind abhängig von der verwendeten Spur, Federmitte und Reifen.

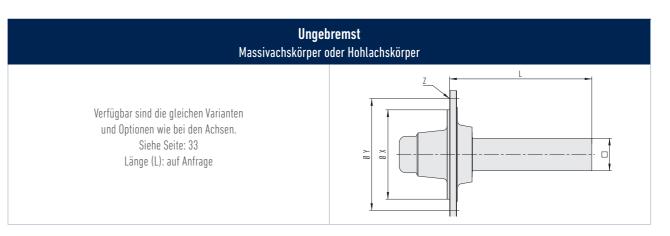
2		Gi	rundplat	te	
Code	Benennung	Darstellung/Beschreibung	Code	Benennung	Darstellung/Beschreibung
0	ohne	_			
1	Grundplatte für GS 9000, Position des Membranzylinders ist über der Achse	Fahrichung direction of fravor	5	Grundplatte für GS 12000/GS 14000, Position des Membranzylinders ist über der Achse	Fadriching direction of leave
2	Grundplatte für GS 11000, Position des Membranzylinders ist über der Achse	Find the state of travers of trav	6	Grundplatte für GS 12000/GS 14000, Position des Membranzylinders ist über der Achse	Girection of France of Property of Propert
3	Grundplatte für GS 11000, Position des Membranzylinders ist über der Achse	direction of travel	7	Grundplatte für GS 12000/GS 14000, Position des Membranzylinders ist unter der Achse	Fabritich ung literatura di traveri
4	Grundplatte für GS 11000, Position des Membranzylinders ist unter der Achse	Fantichtung direction of travel	8	Grundplatte für GS 12000/GS 14000, Position des Membranzylinders ist unter der Achse	Fahrrichung direction of lanet

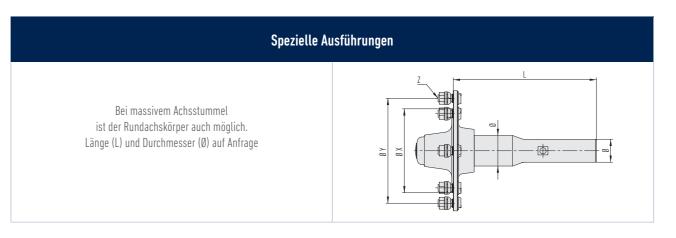
1		Achslappen												
Code					Benennung					Darstellung/Beschreibung				
0					ohne	_								
A-E					Achslappen									
	Feder	Vierkant	C	D	E	F	A	В	Code	- El				
	80	120	101	155	20	21	140	195	Α					
		120	125	150	25	26	175	200	В					
	100	120	125	150	24	26	175	200	С					
	100	150	125	180	22	25	170	220	D					
		150	125	180	25	25	170	220	E	A A				
F		Achsla	ppen für 12	'O-mm-Hohla	chskörper (:	zwei Achslap	pen auf der	Achse)		B 26				
G		Achslappen für 150-mm-Hohlachskörper (zwei Achslappen auf der Achse)												

Spur: 1.700—2.300 mm in 50-mm-Schritten. Weitere Maße auf Anfrage.

Liste der Optionen

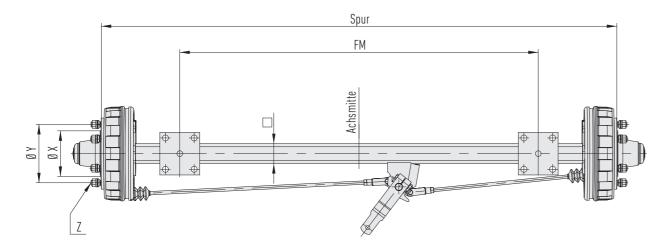

Bremshebel Code Benennung Darstellung/Beschreibung Code Benennung Darstellung/Beschreibung 1 GSK 1 3 AGS 1 2 GSK 2

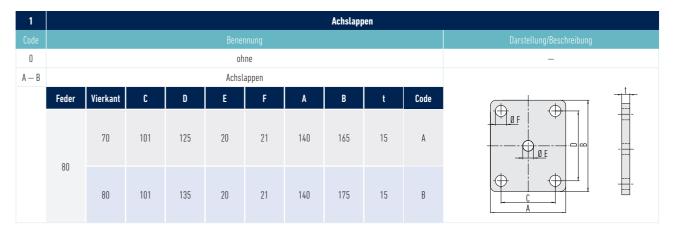

5		Vorbereitung für Reil	endruckregelsystem
	Benennung		Darstellung
0	ohne	_	-
1	mit	bei GS 9000 nicht möglich	631/4"


6	Zwillings	bereifung
Code	Benennung	Darstellung
0	ohne	_
1	mit	

7	Sensor —	SDS/ABS
Code		Darstellung/Beschreibung
0	ohne	_
A —	mit	Mögliche Sensorvarianten SDS/ABS siehe Seite 107

Achsstummel



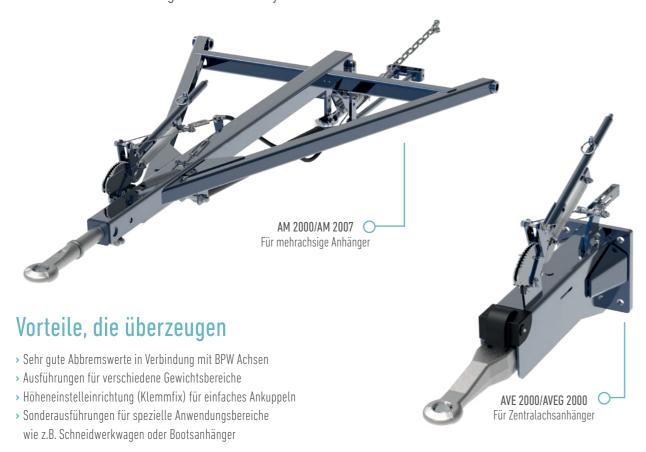

Achsen

mit Rückfahrautomatik

	Achsquer- H chsentyp schnitt (mm)				Statische A	chslast (kg)					Radans	chluss		
Achsentyp				25 km/h			40 km/h		Bremse		Z	Ø X (mm)	ØY (mm)	Typencode
					Bremsachser	mit Spreizhebe	elbremse bis 3.	600 kg Achslast						
GS 3606	55	215	4.000	3.400	0	3.700	3.100	0	S 3006-7 RASK	6	M18 x 1,5	160	205	55.53.375-1-
GS 3606	55	215	4.000	3.400	0	3.700	3.100	0	S 3006-7 RAZG	6	M18 x 1,5	160	205	55.53.381-1-
					Bremsachser	mit Spreizhebe	elbremse bis 4.	000 kg Achslast						
GS 4006	60	330	5.300	4.500	0	4.900	4.100	0	S 3006-7 RASK	6	M18 x 1,5	160	205	55.56.375-1-
GS 4006	60	330	5.300	4.500	0	4.900	4.100	0	S 3006-7 RAZG	6	M18 x 1,5	160	205	55.56.381-1-
GS 4006	60	330	5.300	4.500	0	4.900	4.100	0	S 3006-7 ZG	6	M18 x 1,5	160	205	55.56.384-1-
					Bremsachser	mit Spreizhebe	elbremse bis 5.	500 kg Achslast						
GS 5506	70	250	7.000	6.000	5.500	6.500	5.500	5.000	S 3006-7 RASK	6	M18 x 1,5	160	205	55.63.375-1-
GS 5506	80	370	7.000	6.000	5.500	6.500	5.500	5.000	S 3006-7 RASK	6	M18 x 1,5	160	205	55.63.375-2-
GS 5506	70	250	7.000	6.000	5.500	6.500	5.500	5.000	S 3006-7 RAZG	6	M18 x 1,5	160	205	55.63.381-1-
GS 5506	80	370	7.000	6.000	5.500	6.500	5.500	5.000	S 3006-7 RAZG	6	M18 x 1,5	160	205	55.63.381-2-

RASK: Ausrüstung der Achse mit Schlauchkabel RAZG: Ausrüstung der Achse mit Bremsgestänge ZG: ohne Rückfahrautomatik

3		Bremshebel
Code	Benennung	Darstellung/Beschreibung
0	ohne	_
1	oben	
2	unten	


4		Bremsausgleich
0	ohne	_
1	mittig	140 The standing of the stand
2	versetzt — links BA = 250	250 Applied to the state of th
3	versetzt — rechts BA = 250	250 Activities (15)

Weitere BA - Maße auf Anfrage

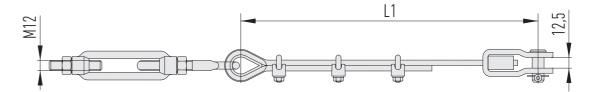
Auflaufeinrichtung

Stabil beim Ziehen, fest beim Bremsen

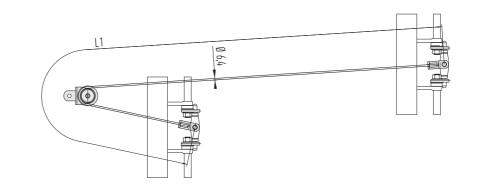
Für alle Fahrzeuge, bei denen keine Fremdkraftbremse eingesetzt werden kann, bieten Ihnen BPW Auflaufeinrichtungen für Zentral- und Mehrachsanhänger in Verbindung mit BPW Achsen mit Rückfahrautomatik und speziellen Übertragungseinrichtungen ein sicheres und wartungsarmes Bremssystem.

Wartungsfreie Höheneinstelleinrichtung für AM 2007

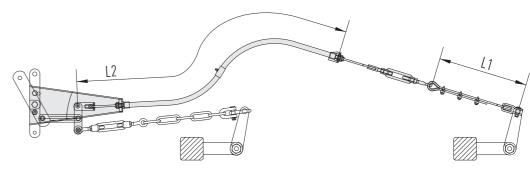
Neben Klemmfix bietet BPW auch eine einfach einstellbare Höheneinstelleinrichtung, die mit Zugfeder und Drahtseil funktioniert. Diese Lösung ist auf Auflaufeinrichtungen bis ca. 4.000 mm Länge ausgelegt.

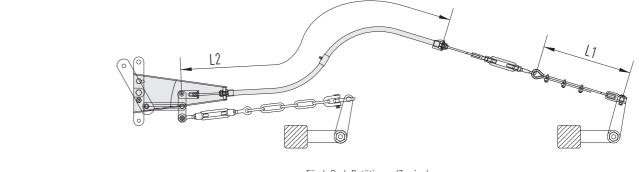

Weitere Merkmale:

- > Einfache und variable Montage dank weniger Befestigungspunkte
- > Hebellänge mehrstufig einstellbar
- > Stufenlose Einstellung der Haltekraft

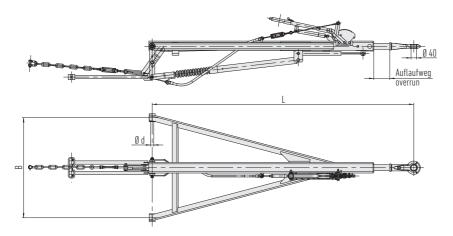


Übertragungseinrichtungen


Für Auflaufeinrichtungen bietet BPW Übertragungseinrichtungen, die speziell auf das entsprechende Fahrzeug abgestimmt werden. Die optimal verlegten Seilzüge gewährleisten in Verbindung mit BPW Rückfahrautomatikachsen beste Bremsergebnisse.


Für 2-Rad-Betätigung/Einachser

Für Tandem


Für 4-Rad-Betätigung/Zweiachser

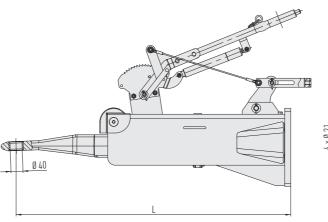
42 | Achsen Auflaufeinrichtung | 43

Auflaufeinrichtung

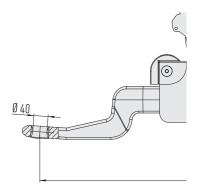
für mehrachsige Anhänger

			Zul. Gesamtgewicht MinMax. (kg)			Auflaufweg	Umlenkhebel:	
Тур	Ausführung	StVZO TA 30 bis 25 km/h	StVZO TA 30 bis und über 25 km/h	EU 2015/68 bis 40 km/h	Radbremse	dbremse Auttautweg (mm) Übersetzung (mm) Typi 3006-7 120 120/100 48.69 3006-7 120 120/100 48.69	Typencode	
			Auflaufeinrichtung für i	mehrachsige Anhängern - AM	2000			
AM 2000	AK 12	3.264-8.000	-	-	S 3006-7	120	120/100	48.69.833-1-
AM 2000	BK 12	-	5.175—8.000	4.200-8.000	S 3006-7	120	120/100	48.69.833-2-
			Auflaufeinrichtung für	mehrachsige Anhängern - AM	2007			
AM 2007	AK 12	3.264-8.000	-	-	S 3006-7	120	120/100	48.69.833-5-
AM 2007	BK 12	4.050-8.000	5.175—8.000	4.200—8.000	S 3006-7	120	120/100	48.69.833-6-

Liste der Optionen



1	Länge: L (mm)								
Code	Benennung	Darstellung/Beschreibung							
1	1.960	bei AM 2000							
2	2.050	bei AM 2000 nur gemäß StVZO							
3	2.500—4.250	bei AM 2007 (nach Anfrage)							


2	Mitter	weite: B (mm) — Lageraugen: H/d (mm)
Code	Benennung	Darstellung/Beschreibung
1	860 60/24	bei AM 2000
2	1.000 70/26	bei AM 2000
3	1.100 70/26	bei AM 2000
4	1.200 80/28	bei AM 2000
5	600—1.600	bei AM 2007 Mittenweite und Lageraugen auf Anfrage

Auflaufeinrichtung

für Zentralachsanhänger

Тур	Ausf.	Zul. Gesamtgewicht Min.—Max. (kg) EU 2015/68 — bis 40 km/h	Max. zul. Stützlast (kg)	Typencode					
	Auflaufeinrichtung für Zentralachsanhänger — AVE 2000								
			500						
AVF 2000	NIV	2.141-6.153	840	/ 0 / 0 E22 1					
AVE ZUUU	NK	2.141-0.133	1.000	48.69.533-1-					
			1.200						
			500	48.69.533-7-					
AVF 2000	GK	2.559—7.774	840						
AVE ZUUU	UN	2.559—7.774	1.000	40.07.333-2-					
			1.200						
			500						
AVE 2000		4.281—8.000	840	48.69.533-3-					
AVE ZUUÜ	NH	4.281—8.000	1.000	40.07.333-3-					
			1.200						
			500						
AVF 2000	GH	5.362—8.000	840	/ 0 / 0 E22 /					
AVE ZUUÜ	חט	3.302-0.000	1.000	48.69.533-4-					
			1.200						

Тур	Ausf.	Zul. Gesamtgewicht Min.—Max. (kg) gemäß StVZO TA 30 bis und über 25 km/h	Max. zul. Stützlast (kg)	Typencode		
	Aufla	ufeinrichtung für Zentralachsa	nhänger — AVEG 200	0		
AVEG 2000	NK	5.046—8.000	1.000	48.69.533-5-		
AVEG 2000	GK 6.348-8.000		1.200	48.69.533-6-		
AVEG 2000	NH	5.600-8.000	1.200	48.69.533-7-		
N: Nadellager G: Gleitlager K: kleinere Ges H: höhere Gesa						

Liste der Optionen

1		Länge: L (mm)
Code	Benennung	Darstellung/Beschreibung
1	910	ohne Flanschplatte
2	920	mit Flanschplatte
3	1.060	ohne Flanschplatte

2	Radbremse								
Code	Benennung	Darstellung/Beschreibung							
1	S 3006-7 RA	Auflaufweg 120 Umlenkhebelübersetzung: 120/100							

44 Achsen Auflaufeinrichtung | 45

Lenkachsen

Fahrzeug lenken und Kosten senken

BPW Lenkachsen eignen sich sowohl für nachlauf- als auch für zwangsgelenkte Fahrzeuge. Für beide Anwendungen bietet BPW millionenfach bewährte Lösungen an.

Nachlauflenkung: GSLA/GSLL

BPW GSLA/GSLL-Lenkachse. Das Kürzel LL steht für "lastabhängige Lenkachsstabilisation" und beschreibt das einzigartige Funktionsprinzip der BPW Nachlauflenkachse. Konventionelle Lenkachskonstruktionen benötigen fremdkraftunterstützte Lenkstabilisationselemente – die BPW Nachlauflenkachse nicht.

Ihre Vorteile

- > Stabiles Fahrverhalten durch Wellendruckscheibe
- > Bessere Manövrierfähigkeit in der Kurve
- > Geringerer und gleichmäßiger Reifenverschleiß
- > Bestmögliche Bodenschonung bei Kurvenfahrt
- > Entweder mit einfachem Arretierungszylinder oder mit Kombizylinder

Zwangslenkung: GSL

BPW GSL-Lenkachsen wurden speziell für den Einsatz in Verbindung mit einem Zwangslenksystem entwickelt. Aufgrund der mittig angebrachten Lenkbolzen ermöglicht die GSL-Lenkachse einen großen Lenkwinkel für gute Manövrierfähigkeit.

Ihre Vorteile

- > Achse für hydraulisch oder elektrisch angesteuerte Zwangslenkung
- > Geringer Wenderadius
- > Reduzierung der Kräfte im Lenkgehäuse durch mittig angebrachten Lenkbolzen
- > Bis zu 25° Lenkeinschlag
- > Wellendruckscheibe für höchste Fahrstabilität

Wellendruckscheibe

Achskörper und Achsschenkel sind über Lenkbolzen mit wellenförmigen Drucklagern verbunden. Bei Geradeausfahrt (O-Stellung) halten die wellenförmigen Druckscheiben die Räder in der Spur. Das Fahrzeuggewicht presst die Wellenkonturen der oberen und unteren Druckscheiben aufeinander. Die Räder bleiben in korrekter und stabiler Geradeausstellung.

Folgt der Anhänger der Zugmaschine in eine Kurve, sorgt der Nachlauf dem Kurvenradius entsprechend fürs Einlenken der Räder (die Druckscheiben gleiten übereinander). Die Lenkachse bewirkt, dass das Aggregat in der Kurve besser einlenkt und nahezu der Kreisbahn der Zugmaschine folgt. Die dabei auftretenden Reifenseitenkräfte werden optimal auf alle Achsen verteilt.

Lenkgehäuse bei Geradeausfahrt (0-Stellung)

Ausgezeichnete Stabilität für Ihre Fahrzeuge

Kombizylinder

Mit dem BPW Kombilenkzylinder kann die Achse sowohl als Nachlauflenkachse auch als zwangsgelenkte Achse verwendet werden. Die multifunktionale Verwendung der Lenkachse reduziert die Lagerhaltung beim Fahrzeughersteller. So ist auch eine kurzfristige Entscheidung zwischen Zwangs- ung Nachlauflenkung möglich.

Funktionsprinzip

Nachlauflenkung

(Lenkachse gesperrt für Rückwärtsfahrt oder ab 40 km/h)

Zwangslenkung Geradeausfahrt Links eingelenkt

Lenkachsen | 47

AGRO Turn

Neuer Maßstab für Lenkachsen

BPW als Lenkachsspezialist bietet mit der AGRO Turn Nachlauflenkachse Spitzenqualität und Zuverlässigkeit durch optimierte und hochqualitative Komponenten. Die Faust der Achsschenkelgruppe sowie die Lenkgabel werden ausschließlich aus geschmiedetem und vergütetem Stahl gefertigt.

- > Sie sparen Zeit dank wartungsfreier integrierter Spurstange
- > Geschmiedete und vergütete Lenkgabel und Lenkfaust, um längere Lebensdauer zu sichern
- > Einfache Lenkanschlageinstellung kein spezielles Werkzeug notwendig

Details

1. Integrierte Lenkwinkelsensoren

Die integrierte Konstruktion garantiert eine **stabile**, **zuverlässige Funktion** der Sensoren, die abhängig vom jeweiligen Typ ganz oder zum Teil durch die Adapter geschützt sind.

Vorbereitung für elektronische Zwangslenkung

Weitere Informationen siehe Seite 109

2. Montierbare Grundplatte bei AGRO Turn

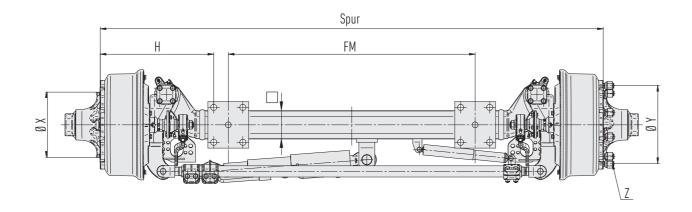
BPW bietet für AGRO Turn eine flexible, einfach umbaubare Grundplattenlösung, mit der dieselbe Achse für verschiedene Reifengrößen verwendet werden kann. Eine verstellbare Grundplatte bedeutet mehr Flexibilität und mehr Bodenfreiheit.

Gekröpfte
(30 mm links) GSK/AGS

Gekröpfte (30 mm rechts) GSK/AGS

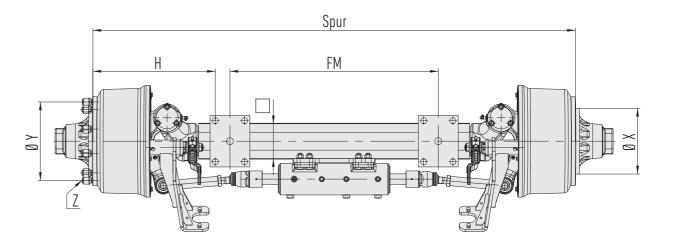
Zusätzliche Möglichkeit

Jede Grundplatte (mit geradem oder gekröpftem GSK/AGS) kann in vier verschiedenen Positionen (verstellbar um 10°) angeschraubt werden.



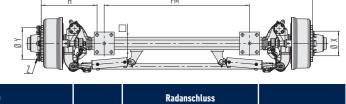
48 | Achsen

Nachlauflenkachse


mit Arretierungszylinder

	Achsquer-		Statische Achslast (kg)				Radanschluss				
Achsentyp	schnitt (mm)	н	25 km/h	40 km/h	60 km/h	Bremse	Z		Ø X (mm)	ØY (mm)	Typencode
				Lenkachs	sen bis 7.000 kg Achs	ast					
GSLM 7008	90	490	7.000	6.500	6.000	ungebremst	8	M20 x 1,5	220	275	36.67.001-1-
GSLM 7006	90	490	7.000	6.500	6.000	N 3411-1	6	M20 x 1,5	220	275	36.67.463-1-
GSLM 7008	90	490	7.000	6.500	6.000	N 3411-1	8	M18 x 1,5	220	275	36.67.463-2-
GSLM 7008	90	490	7.000	6.500	6.000	N 3411-1	8	M20 x 1,5	220	275	36.67.463-3-
				Lenkachs	sen bis 9.000 kg Achs	ast					
GSLA 9008	110 x 14	480	10.000	9.000	8.500	ungebremst	8	M20 x 1,5	220	275	36.76.001-1-
GSLA 9008	110 x 14	480	10.000	9.000	8.500	N 3411-1	8	M20 x 1,5	220	275	36.76.463-1-
GSLA 9008	110 x 14	480	10.000	9.000	8.500	N 4012-4	8	M20 x 1,5	220	275	36.76.462-1-
GSLA 9010	110 x 14	480	10.000	9.000	8.500	N 4012-4	10	M22 x 1,5	280	335	36.76.462-2-
				Lenkachs	en bis 11.000 kg Achs	last					
GSLA 11008	120 x 15	555	12.000	10.500	10.000	ungebremst	8	M20 x 1,5	220	275	36.88.001-1-
GSLA 11008	120 x 15	555	12.000	10.500	10.000	N 4012	8	M20 x 1,5	220	275	36.88.462-1-
GSLA 11008	120 x 15	555	12.000	10.500	10.000	FL 4112	8	M22 x 1,5	220	275	36.88.460-1-
GSLA 11010	120 x 15	555	12.000	10.500	10.000	ungebremst	10	M22 x 1,5	280	335	36.88.001-2-
GSLA 11010	120 x 15	555	12.000	10.500	10.000	N 4012	10	M22 x 1,5	280	335	36.88.462-2-
GSLA 11010	120 x 15	555	12.000	10.500	10.000	FL 4112	10	M22 x 1,5	280	335	36.88.460-2-
				Lenkachs	en bis 12.000 kg Achs	last					
GSLL 12010	150 x 16	805	13.000	12.000	11.000	ungebremst	10	M22 x 1,5	280	335	36.72.001-1-
GS(H)LL 12010	150 x 16	805	13.000	12.000	11.000	FL 4112	10	M22 x 1,5	280	335	36.72.460-1-
GS(H)LL 12010	150 x 16	805	13.000	12.000	11.000	FL 4118	10	M22 x 1,5	280	335	26.77.449-1-

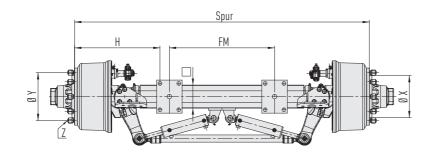
Nachlauflenkachse


mit Kombizylinder

	Achsquer-		s	tatische Achslast (kg)			Rada	nschluss			
Achsentyp	schnitt (mm)	н	25 km/h	40 km/h	60 km/h	Bremse		Z ØX ØY (mm)			Typencode	
				Lenkachs	en bis 11.000 kg Achsla	ast						
GSLA 11008	120 x 15	555	12.000	10.500	10.000	ungebremst	8	M22 x 1,5	220	275	36.88.001-3-	
GSLA 11008	120 x 15	555	12.000	10.500	10.000	FL 4112	8	M22 x 1,5	220	275	36.88.460-3-	
GSLA 11010	120 x 15	555	12.000	10.500	10.000	ungebremst	10	M22 x 1,5	280	335	36.88.001-4-	
GSLA 11010	120 x 15	555	12.000	10.500	10.000	FL 4112	10	M22 x 1,5	280	335	36.88.460-4-	
				Lenkachs	en bis 13.500 kg Achsla	st*						
GSLL 12010	150 x 16	715	14.000	13.500	12.000	ungebremst	10	M22 x 1,5	280	335	36.77.001-1-	
GS(H)LL 12010	150 x 16	715	14.000	13.500	12.000	FL 4118	10	M22 x 1,5	280	335	36.77.449-1-	
				Lenkachs	en bis 15.000 kg Achsla	ast						
GSLL 14010	150 x 16	690	15.000	14.000	13.000	ungebremst	10	M22 x 1,5	280	335	36.74.001-1-	
GS(H)LL 14010	150 x 16	690	15.000	14.000	13.000	FL 4118	10	M22 x 1,5	280	335	36.74.449-1-	
				Lenkachsen bis	12.000 kg Achslast für	80 km/h						
GSN(H)LL 12010	150 x 16	_	-	-	-	SN 4220	10	M22 x 1,5	280	335	36.72.744-1-	
* AGRO Turn.												

Nachlauflenkachse

mit Zwangszylinder

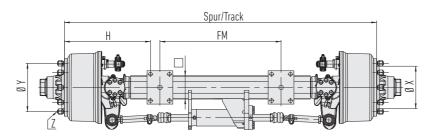

					Achsquer- schnitt		Achsquer-					Radanschluss				
Achsentyp	schnitt (mm)	Н	25 km/h	40 km/h	60 km/h	Bremse		Z	Ø X (mm)	Ø Y (mm)	Typencode					
				Lenkachs	en bis 11.000 kg Achsla	ast										
GSLA 9008	110 x 14	480	10.000	9.000	8.500	ungebremst	8	M20 x 1,5	220	275	36.76.001-2-					
GSLA 9008	110 x 14	480	10.000	9.000	8.500	N 3411-1	8	M20 x 1,5	220	275	36.76.463-2-					
GSLA 9008	110 x 14	480	10.000	9.000	8.500	N 4012-4	8	M20 x 1,5	220	275	36.76.462-3-					
GSLA 9010	110 x 14	480	10.000	9.000	8.500	N 4012-4	10	M22 x 1,5	280	335	36.76.462-4-					

Diese Typen eignen sich nur für Zwangslenkung.

50 | Achsen Nachlauflenkachse | **51**

Zwangslenkachse

mit zwei Zylindern

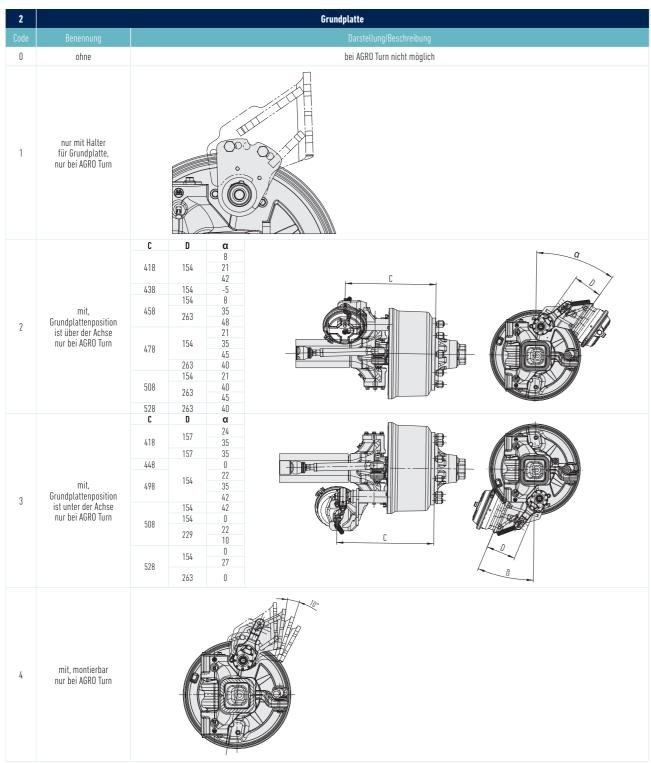


	Achsquer-		:	Statische Achslast (kg	1)			Rada	nschluss		
Achsentyp	schnitt (mm)	Н	25 km/h	40 km/h	60 km/h	Bremse		Z	Ø X (mm)	ØY (mm)	Typencode
				Lenkachsen	bis 11.000 kg Achslast						
GSL 11008	120 x 15	555	12.000	10.500	10.000	ungebremst	8	M22 x 1,5	220	275	36.88.001-5-
GSL 11008	120 x 15	555	12.000	10.500	10.000	FL 4112	8	M22 x 1,5	220	275	36.88.460-5-
GSL 11010	120 x 15	555	12.000	10.500	10.000	ungebremst	10	M22 x 1,5	280	335	36.88.001-6-
GSL 11010	120 x 15	555	12.000	10.500	10.000	FL 4112	10	M22 x 1,5	280	335	36.88.460-6-
				Lenkachsen	bis 12.000 kg Achslast						
GSL 12010	120*	?	13.000	12.000	11.000	FL 4118	10	M22 x 1,5	280	335	26.77.449-2-
GSL 12010	150 x 16	805	13.000	12.000	11.000	ungebremst	10	M22 x 1,5	280	335	36.72.001-2-
GSL 12010	150 x 16	805	13.000	12.000	11.000	FL 4118	10	M22 x 1,5	280	335	26.77.449-3-

^{* 120-}mm-Massivachskörper.

Zwangslenkachse

mit Einzylinder


	Achsquer-		S	Statische Achslast (kg	1)	_	Radanschluss				
Achsentyp	schnitt (mm)	н	25 km/h	40 km/h	60 km/h	Bremse		Z	Ø X (mm)	Ø Y (mm)	Typencode
	Lenkachsen bis 11.000 kg Achslast										
GSL 11008	120 x 15	555	12.000	10.500	10.000	ungebremst	8	M22 x 1,5	220	275	36.88.001-7-
GSL 11008	120 x 15	555	12.000	10.500	10.000	FL 4112	8	M22 x 1,5	220	275	36.88.460-7-
GSL 11010	120 x 15	555	12.000	10.500	10.000	ungebremst	10	M22 x 1,5	280	335	36.88.001-8-
GSL 11010	120 x 15	555	12.000	10.500	10.000	FL 4112	10	M22 x 1,5	280	335	36.88.460-8-
	Lenkachsen bis 12.000 kg Achslast										
GSL 12010	150 x 16	805	13.000	12.000	11.000	ungebremst	10	M22 x 1,5	280	335	36.72.001-3-
GSL 12010	150 x 16	805	13.000	12.000	11.000	FL 4118	10	M22 x 1,5	280	335	26.77.449-4-

Liste der Optionen

1								Achslap	pen	
Code					Benennung					Darstellung/Beschreibung
0	ohne									-
Ά — E				1	Achslappen					
	Feder	Vierkant	C	D	E	F	A	В	Code	
	80	120	101	155	20	21	140	195	А	52
	100	120	125	150	25	26	175	200	В	₱ _® F
	100	120	125	150	24	26	175	200	С	
	100	150	125	180	22	25	170	220	D	
	100	150	125	180	25	25	170	220	E	
F	Achslappen für 120-mm-Hohlachskörper (zwei Achslappen auf der Achse)							924		
G	Achslappen für 150-mm-Hohlachskörper (zwei Achslappen auf der Achse)							Ø 26 125		

52 | Achsen

Liste der Optionen

Grundplattenposition für andere Lenkachstypen auf Anfrage.

3		Bremshebel
Code		
0	ohne	-
1	mit GSK	Verwendung GSK oder AGS ist abhängig von der Grundplattenlösung, der Reifengröße und dem Freiraum.
2	mit AGS	Sollte in 3D-Modell geprüft werden.

5		Vorbereitung für Reifendruckregelsystem							
Code	Benennung	Beschreibung	Darstellung						
0	ohne	_	-						
1	mit	mit	63/4"						

6	Zwillingsbereifung							
			Darstellung					
0	ohne	-	-					
1	mit	mit						

7	Sensor — SDS/ABS					
Code						
0	ohne	-				
A -	mit	mögliche Sensoren SDS/ABS — siehe Seite 107				

8	Sensor — Lenkwinkel					
Code		Darstellung/Beschreibung				
0	ohne	-				
A -	mit	mögliche Sensoren — siehe Seite 109				

9	Zentralschmieranlage					
0	ohne	-				
1	mit					

10	Spezielle Abdichtung					
Kode						
0	ohne	_				
A -	mit	Abdichtung geeignet für schwierigen Einsatz				

AGRO Drive

Die hydraulische Antriebsachse

Die Antriebsachse für den Anhänger. Weiterfahren, wo andere stehen bleiben.

Hoher Nutzen dank angetriebener Achsen im Anhänger

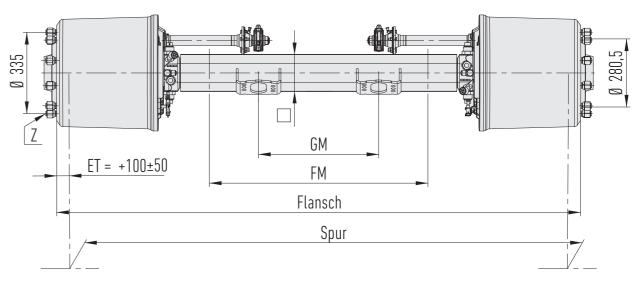
Die Einsatzgebiete für hydraulisch angetriebene Achsen sind vielfältig. Ob Düngearbeiten am Hang, Erntetätigkeiten bei nassen und schlüpfrigen Bodenverhältnissen, beim Befahren von Silos oder bei Lade- und Transportarbeiten auf unbefestigtem Baustellenboden. Mit der Antriebsachse von BPW haben Sie für schwierigste Einsatzverhältnisse die richtige Lösung.

- > Hohes Drehmoment und großer Geschwindigkeitsbereich
- > Bodenschonend durch reduzierten Schlupf der Traktorantriebsräder
- > Leichte Traktoren können höhere Lasten ziehen
- > Besseres "Nutzlast zu Gesamtgewicht"-Verhältnis
- > Reduzierte Anzahl der Transportfahrten

Ihre Vorteile

Standardmäßig mit RDS-Vorbereitung.

Durch unterschiedliche Bremswellenposition kombinierbar mit verschiedenen Federungssystemen.


Der Bremsbelagsservice erfolgt nach bekannter BPW Methode ohne Demontage des Antriebsmotors.

Optional beidseitige Verwendung von geschützen SDS-(Drehzahl-, Drehrichtung-) und ABS-Sensoren.

Technische Daten

Тур	GHB 12010 starre Achse
Achskörper	150 x 20 mm
Bremse	FL 4118
Max. Achslast	13.500 kg bei 40 km/h
Min. Felgendurchmesser	22,5"
optimale Einpresstiefe	+105 mm

Konkrete Ausführung auf Anfrage

BB6-Motor von Black Bruin

Die BPW AGRO Drive Achse verwendet einen zuschaltbaren hydrostatischen Fahrantrieb der Firma Black Bruin. Durch die zweistufigen Motoren kann ein großer Geschwindigkeitsbereich abgedeckt werden. Im Straßenbetrieb befinden sich die Radialkolbenmotoren ohne aktive Steuerung im Freilauf.

Technische Daten	Erster Gang	Zweiter Gang
Verschiebung	3.150 ccm	1.575 ccm
Max. Ausgangsleistung	90 KW	54 KW
Max. Arbeitsdruck (Spitzdruck)	450 bar	450 bar
Max. Arbeitsdruck	400 bar	400 bar
Max. Drehmoment (ca.)	18.820 Nm	9.410 Nm
Arbeitsdruck*	200 bar	200 bar
Drehmoment*	9.410 Nm	4.705 Nm

^{*} Nur durch Traktorhydraulik.

AGRO Drive | 57

Anwendungsspezifische Achsen von BPW

BPW über das ganze Jahr

Das Spannende an landwirtschaftlichen Fahrzeugen und Maschinen ist, dass nie zwei identische Anwendungsfälle auftreten. Wir kennen die Herausforderungen der Agrarbranche, und mit unseren über 100 Jahren Erfahrung in Fahrwerkstechnik sind wir überzeugt, dass Menschen und Maschinen eine Einheit bilden können, für die nichts unmöglich ist.

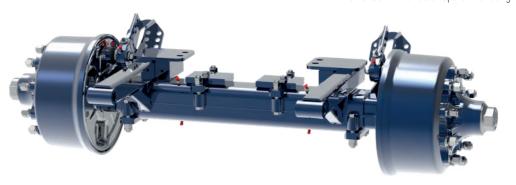
Deswegen bieten wir im Bereich der Fahrwerktechnik eine hohe Lösungskompetenz bei der Entwicklung von individuellen Fahrwerksystemen gemeinsam mit den Kunden. Beispielhaft dafür stehen die folgenden Speziallösungen:

> Große Auskragung in der Mitte, wo die Achse befestigt wird

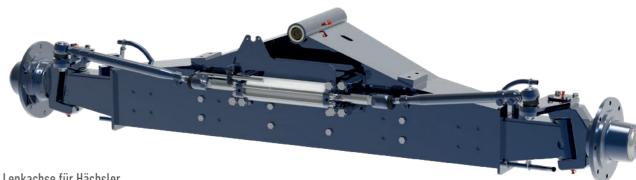
Spezialachse für Sämaschine

> Kompaktes Design für wenig Platz

Feldspritze



Starre oder gelenkte Achse mit Kastenlenker


> Massives Kassettendesign für ausgezeichnetes Fahrverhalten

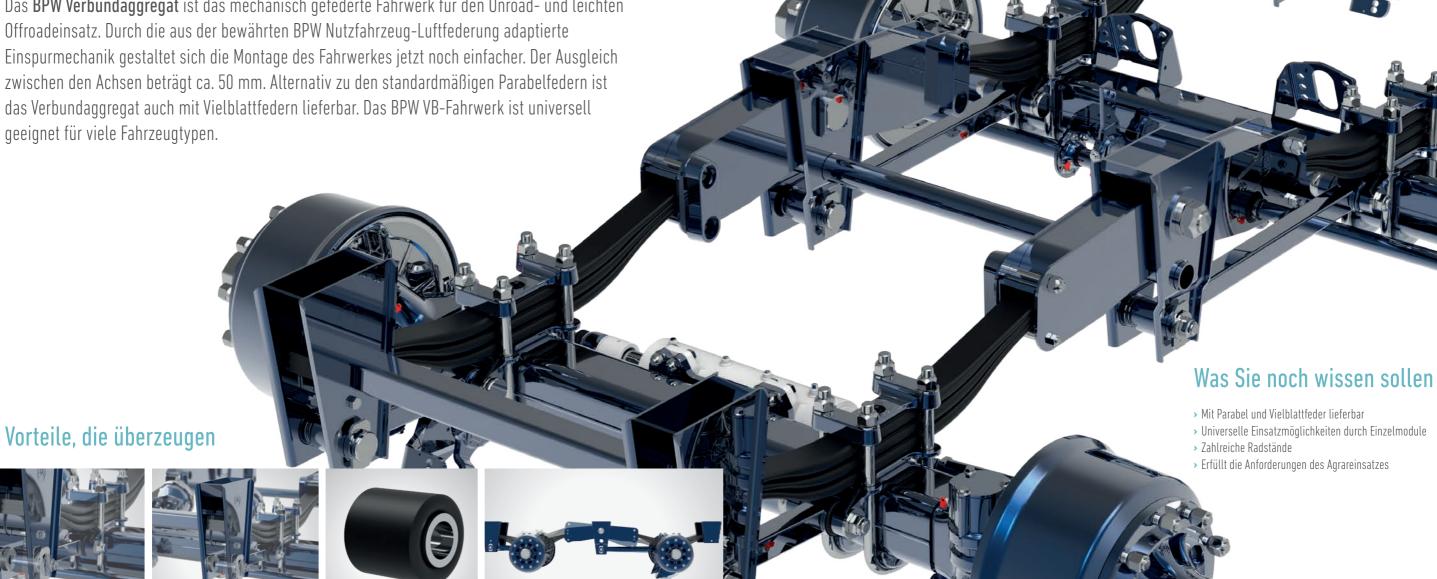
Spurverstellbare Achse

> Eine Achse mit variabler Spuranwendung

Erntemaschine

Lenkachse für Hächsler

> Pendelbolzen für gute Bodenanpassung

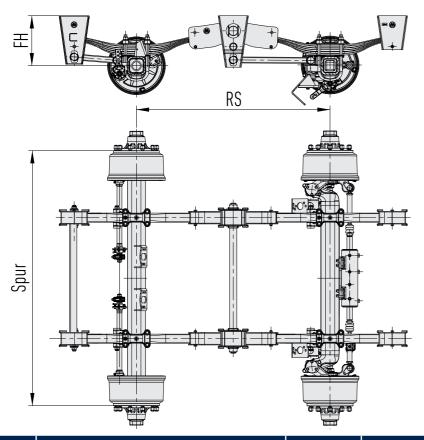

58 | Achsen Anwendungsspezifische Achsen von BPW | 59

Verbundaggregat

Einfach, aber robust

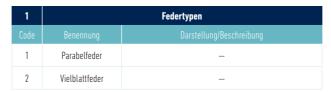
Das BPW Verbundaggregat ist das mechanisch gefederte Fahrwerk für den Onroad- und leichten Offroadeinsatz. Durch die aus der bewährten BPW Nutzfahrzeug-Luftfederung adaptierte Einspurmechanik gestaltet sich die Montage des Fahrwerkes jetzt noch einfacher. Der Ausgleich zwischen den Achsen beträgt ca. 50 mm. Alternativ zu den standardmäßigen Parabelfedern ist das Verbundaggregat auch mit Vielblattfedern lieferbar. Das BPW VB-Fahrwerk ist universell geeignet für viele Fahrzeugtypen.

Kleine Details


> Reduzierung der Montagezeit dank dem leichten Einspuren der Aggregate

- › Geringerer Reifenverschleiß durch präzise Spurführung und optimale Lage der Verbindungsstangen
- > Erhöhte Lebensdauer durch optimierte Lagerung der Verbindungsstange

- Austauschbare Federgleitstücke
- > Kein Verschleiß des Pendelarmes und der Stütze
- > Sie sparen Zeit dank Montageund Reparaturfreundlichkeit
- **Gummi-Stahl-Buchse** in Pendelarm
- > 100 % wartungsfrei
- > Hohe Lebensdauer
- Statischer Achslastausgleich über Pendelarme
- > Gute Bodenanpassung
 - > Leichtzügigkeit


62 | Aggregate

Verbundaggregat

Administra	Achsquerschnitt	Statische Achslast (kg) bei 40 km/h						
Achsentyp	(mm)	Einachser	Tandem	Tridem	Bremse	Radanschluss	Typencode	
			GS	SVB (LA) 8008/8010				
GSVB 8008	100	8.000	16.000	_	ungebremst	8 x M20 x 1,5 — 220/275	56.70.04-1-	
GSVB 8008	100	8.000	16.000	-	N 4008	8 x M20 x 1,5 — 220/275	56.70.04-2-	
GSVB 8008	100	8.000	16.000	-	N 3411	8 x M20 x 1,5 — 220/275	56.70.04-3-	
GSVB 8010	100	8.000	16.000	-	ungebremst	10 x M22 x 1,5 — 280/335	56.70.04-4-	
GSVB 8010	100	8.000	16.000	-	N 4008	10 x M22 x 1,5 — 280/335	56.70.04-5-	
Gelenkte Ausführun	g auf Anfrage.		GS	SVB (LA) 9008/9010				
GSVB(LA) 9008	110 x 10(14)	8.500	17.000	-	ungebremst	8 x M20 x 1,5 — 220/275	56.76.04-1-	
GSVB(LA) 9008	110 x 10(14)	8.500	17.000	-	N 3411	8 x M20 x 1,5 — 220/275	56.76.04-2-	
GSVB(LA) 9008	110 x 10(14)	8.500	17.000	-	N 4012	8 x M20 x 1,5 — 220/275	56.76.04-3-	
GSVB(LA) 9010	110 x 10(14)	8.500	17.000	-	ungebremst	10 x M22 x 1,5 — 280/335	56.76.04-4-	
GSVB(LA) 9010	110 x 10(14)	8.500	17.000	-	N 4012	10 x M22 x 1,5 — 280/335	56.76.04-5-	
			GS)	/B (LA) 11008/11010				
GSVB(LA) 11008	120 x 10(15)	10.000	20.000	30.000	ungebremst	8 x M20 x 1,5 — 220/275	56.88.04-1-	
GSVB(LA) 11008	120 x 10(15)	10.000	20.000	30.000	N 4012	8 x M20 x 1,5 — 220/275	56.88.04-2-	
GSVB(LA) 11008	120 x 10(15)	10.000	20.000	30.000	FL 4112	8 x M20 x 1,5 — 220/275	56.88.04-3-	
GSVB(LA) 11010	120 x 10(15)	10.000	20.000	30.000	ungebremst	10 x M22 x 1,5 — 280/335	56.88.04-4-	
GSVB(LA) 11010	120 x 10(15)	10.000	20.000	30.000	N 4012	10 x M22 x 1,5 — 280/335	56.88.04-5-	
GSVB(LA) 11010	120 x 10(15)	10.000	20.000	30.000	FL 4112	10 x M22 x 1,5 — 280/335	56.88.04-6-	
				GSVB (LL) 12010				
GSVB(LL) 12010	150 x 10(16)	13.000	26.000	39.000	ungebremst	10 x M22 x 1,5 — 280/335	56.72.04-1-	
GSVB(LL) 12010	150 x 10(16)	13.000	26.000	39.000	FL 4118	10 x M22 x 1,5 — 280/335	56.72.04-2-	

Spurweiten, Federmitten auf Anfrage. Achslasten abhängig vom Verhältnis Spur/Federmitte und von der Bereifung.

2	RS — Radstand — GS 8008 (10) und GS 9008 (10)		
1	1.380	_	
2	RS — Rad	stand — GS 11008 (10) und GS 12010	
Code	Benennung		
1	1.360	-	
2	1.380	bei GS 12010 nicht möglich	
3	1.500	-	
4	1.600	_	
5	1.820	_	

3	Flachr	ahmen
Code	Benennung	Darstellung/Beschreibung
0	ohne	-
1	mit (für Rahmenbreite weitere Abstimmung nötig)	

	Radstand								
		beladen	unbeladen	beladen	unbeladen	beladen	unbeladen	beladen	unbeladen
4				FH —	Fahrhöhe — GS 801	0/GS 9010			
Code					Benennung				
1	1.380	279	314	-	-	-	-	-	-
4				FH — F	ahrhöhe — GS 1100	8/GS 11010			
1	1.360	376	398	367	403	344	382	-	-
2	1.380	305	326	-	_	_	_	-	-
3	1.500	376	398	367	409	344	382		
4	1.600	376	398	367	409	344	382	223	265
5	1.820	368	390	359	401	336	374		
4				F	H — Fahrhöhe — GS	12010			
1	1.360							-	-
2	1.500	384	413	405	447	359	397	200	250
3	1.600							208	250
4	1.820	376	398	367	409	344	382	208	250

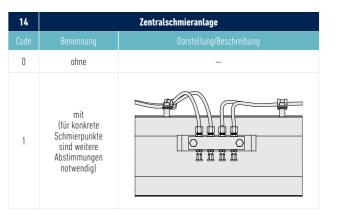
5	Anwendung		
Code	Benennung	Darstellung/Beschreibung	
1	Einachser	_	
2	Tandem	_	
3	Tridem	-	

6	Ausführung		
Code	Benennung	Darstellung/Beschreibung	
1	starre	starre — starre	
2	gelenkte	starre — gelenkte	
3	gelenkte	starre — starre — gelenkte	
4	gelenkte	gelenkte — starre — gelenkte	

7		Lenkac	chse
Code	Benennung	Beschreibung	Darstellung
0	ohne	_	_
1	Nachlauflenkachse	Arretierungszylinder — nur bis 12 t Achslast	
2	Nachlauflenkachse Nachlauflenkung	Kombizylinder — möglich nur bei Typen GS 11010 (8) und GS 12010	
3	Nachlauflenkachse Zwangslenkung	Kombizylinder — möglich nur bei Typen GS 11010 (8) und GS 12010	
4	Zwangslenkachse	möglich nur bei Typen GS 11010 (8) und GS 12010	

8		Bremshebel	
Code			
1	GSK	Vermandura una CCV adra ACC introllà acia una des Considerationes des Daifes acide una des Facianes Calles in OD Madell accessité una des	
2	AGS	Verwendung von GSK oder AGS ist abhängig von der Grundplattenlösung, der Reifengröße und dem Freiraum. Sollte in 3D-Modell geprüft werden.	

9		Zwillingsb	ereifung
Code	Benennung	Beschreibung	Darstellung
0	ohne	_	
1	mit	möglich nur bei Typen GS 11010 (8) und GS 12010	


10		Vorbereitung für Reifendruckregelsystem				
Code	Benennung	Beschreibung	Darstellung			
0	ohne	_	-			
1	mit	möglich nur bei Typen GS 11010 (8) und GS 12010	63/4"			

11	Sensor — SDS/ABS — Starrachse	
Code	Benennung	Darstellung/Beschreibung
0	ohne	_
A-	mit	mögliche Sensoren SDS/ABS — siehe Seite 107

12	Sensor — SDS/ABS — Lenkachse	
Code		Darstellung/Beschreibung
0	ohne	_
Α-	mit	mögliche Sensoren SDS/ABS — siehe Seite 107

13	Sensor - Lenkwinkel		
Code	Benennung	Darstellung/Beschreibung	
0	ohne	_	
Α-	mit	mögliche Sensoren nur bei GS 12010 und GS 14010 — siehe Seite 109	

15	Bremszylinder		
	Benennung		
0	ohne	-	
1	mit	Bremszylindergröße wird durch die Bremsberechnung ermittelt	

Doppelachsaggregat

Geboren für harte Arbeit

Das **BPW Boogieaggregat** ist universell für viele Fahrzeugtypen wie z. B. Fasswagen, Ladewagen, Kipper etc, einsetzbar. Durch den großen Ausgleich zwischen den Achsen von ca. 300 mm ist das Boogieaggregat sehr gut geeignet für den Offroadeinsatz. Es hat einen geringen Wartungsaufwand und wird als komplett montiertes Aggregat einbaufertig ausgeliefert.

Vorteile, die überzeugen

- Leichtzügigkeit und gute Bodenanpassung
- > Perfekt für Offroadeinsatz

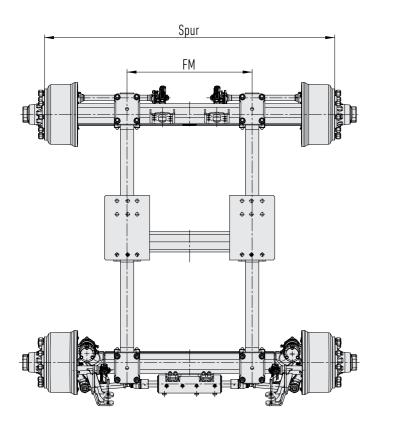
HD-Stütze

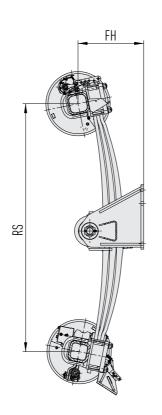
- Optimale Verbindung zwischen Achse und Aufbau
- > Erhöhte Belastbarkeit
- Optimiertes Design für besseren Kraftfluss

Spezielle Parabelfeder

- Leichtzügigkeit und gute Bodenanpassung dank der asymmetrisch eingebundenen Federn
- Keine Bremsüberlastung dank der optimalen Gewichtsverlagerung

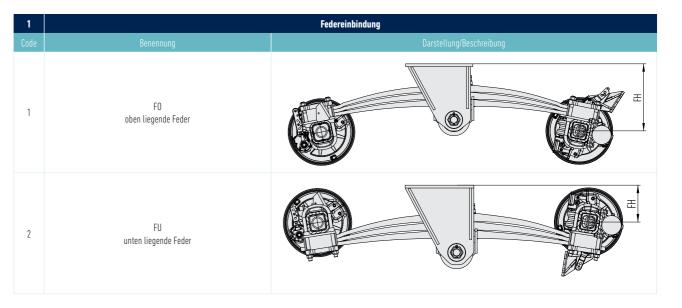
Formschlüssige Achseinbindung


- Sie profitieren von einer langen Nutzungsdauer
- Keine Schweißnaht auf dem Achskörper, um eine lange Lebensdauer zu sichern
- Hohe Belastbarkeit


Weitere Merkmale

- Anwendungsspezifische Konstruktion dank langjähriger Erfahrung
- > Geprüfte und getestete Komponenten
- > Erfüllt die Anforderungen des Agrareinsatzes
- > Ready-to-use-System
- Das Fahrwerk entspricht EU-Richtlinie, dadurch problemfreie Fahrzeughomologation

68 | Aggregate Doppelachsaggregat | 6


Doppelachsaggregat

Achsentyp	Achsquerschnitt Vorderachse (mm)	Achsquerschnitt Hinterachse (mm)	Statische Aggregatlast (kg)				
			40 km/h	60 km/h	Bremse	Radanschluss	Typencode
			(SSBW (LA) 7006/7008*			
GSBW 7006	90	90	13.000	12.000	ungebremst	6 x M18 x 1,5 — 160/205	56.67.05-1-
GSBW 7006	90	90	13.000	12.000	N 3411	6 x M18 x 1,5 — 160/205	56.67.05-2-
GSBW 7008	90	90	13.000	12.000	ungebremst	8 x M20 x 1,5 — 220/275	56.67.05-3-
GSBW 7008	90	90	13.000	12.000	N 3411	8 x M20 x 1,5 — 220/275	56.67.05-4-
			(SSBW (LA) 9008/9010*			
GSBW 9008	110 x 14	110 x 14	17.000	16.000	ungebremst	8 x M20 x 1,5 — 220/275	56.76.05-1-
GSBW 9008	110 x 14	110 x 14	17.000	16.000	N 3411-1	8 x M20 x 1,5 — 220/275	56.76.05-2-
GSBW 9008	110 x 14	110 x 14	17.000	16.000	N 4012-4	8 x M20 x 1,5 — 220/275	56.76.05-3-
GSBW 9010	110 x 14	110 x 14	17.000	16.000	ungebremst	10 x M22 x 1,5 — 280/335	56.76.05-4-
GSBW 9010	110 x 14	110 x 14	17.000	16.000	N 4012-4	10 x M22 x 1,5 — 280/335	56.76.05-6-
			G	SBW (LA) 11008/11010			
GSBW 11008	120 x 10(15)	120 x 10(15)	20.000	18.000	ungebremst	8 x M20 x 1,5 — 220/275	56.88.05-1-
GSBW 11008	120 x 10(15)	120 x 10(15)	20.000	18.000	N 4012	8 x M20 x 1,5 — 220/275	56.88.05-2-
GSBW 11008	120 x 10(15)	120 x 10(15)	20.000	18.000	FL 4112	8 x M20 x 1,5 — 220/275	56.88.05-3-
GSBW 11010	120 x 10(15)	120 x 10(15)	20.000	18.000	ungebremst	10 x M22 x 1,5 — 280/335	56.88.05-4-
GSBW 11010	120 x 10(15)	120 x 10(15)	20.000	18.000	N 4012	10 x M22 x 1,5 — 280/335	56.88.05-5-
GSBW 11010	120 x 10(15)	120 x 10(15)	20.000	18.000	FL 4112	10 x M22 x 1,5 — 280/335	56.88.05-6-
GSBW 11010	120 x 10(15)	120 x 10(15)	20.000	18.000	FL 4118	10 x M22 x 1,5 — 280/335	56.88.05-7-
				GSBW (LL) 12010			
GSBW 12010	150 x 10(16)	150 x 10(16)	26.000	24.000	ungebremst	10 x M22 x 1,5 — 280/335	56.72.05-1-
GSBW 12010	150 x 10(16)	150 x 10(16)	26.000	24.000	FL 4118	10 x M22 x 1,5 — 280/335	56.72.05-2-

^{*} Für diese Ausführungen gilt nicht die Liste der Optionen. Verfügbare Variationen nach Anfrage. Spurweiten, Federmitten auf Anfrage.

2	RS — Radstand (mm)			
Code				
1	1.450	-		
2	1.540	erhältlich bis 20 t Belastung		
3	1.600	-		
4	1.900	-		

3	Kopfplatte — Lochbild			
Code	Benennung	Darstellung/Beschreibung		
0	ohne Bohrung	480		
1	mit Bohrungen	9x 0 26 		

Achslasten abhängig vom Verhältnis Spur/Federmitte und von der Bereifung.
26 t (Heavy-Duty-Ausführung) nur mit verstärkter Stütze und Feder (HD) und mit Lenkachse möglich.

Liste der Optionen

4	FH — Fahrhöhe (mm) — bis 20 t										
Code											
	Radstand (Feder)	14	50	15	40	16	00	19	00		
	Stützenhöhe	FU	FO	FU	F0	FU	FO	FU	F0	-	-
1	300	-	_	154	374	-	_	-	-	-	-
2	370	231	443	224	444	231	454	240	464	-	-
3	400	261	473	254	474	261	484	270	494	-	_

4		FH — Fahrhöhe (mm) — bis 20-26 t										
	Radstand (Feder)	1450		1600		1600	1600 HD		1900		1900 HD	
	Stützenhöhe	FU	FO	FU	FO	FU	FO	FU	FO	FU	FO	
1	400	202	465	219	476	_	_	223	486	_	_	
2	430	232	495	249	506	_	_	253	517	_	_	
3	430 HD	232	495	_	_	240	505	-	-	224	495	
4	470	272	535	287	546	-	-	291	557	-	_	
5	530	332	_	347	_	-	_	353	_	_	_	
6	530 HD	332	-	_	_	340	-	-	_	322	_	

26 t (Heavy-Duty-Ausführung) nur mit verstärkter Stütze, und Feder (HD) und Lenkachse möglich.

6	Ausführung			
Code	Benennung	Darstellung		
1	Starrachse — Starrachse mit Radstand von 1.900 mm nicht möglich	-		
2	Starrachse — Lenkachse	-		

7		Lenkaci	hse
Code	Benennung	Beschreibung	
0	ohne	_	_
1	Nachlauflenkachse	Arretierungszylinder — nur bis 12 t Achslast	
2	Nachlauflenkachse Nachlauflenkung	Kombizylinder — möglich nur bei Typen GS 11010 (8) und GS 12010	
3	Nachlauflenkachse Zwangslenkung	Kombizylinder — möglich nur bei Typen GS 11010 (8) und GS 12010	
4	Zwangslenkachse	möglich nur bei Typen GS 11010 (8) und GS 12010	

8	Bremshebel					
Code						
1	GSK	Verwendung von GSK oder AGS ist abhängig von der Grundplattenlösung, der Reifengröße und dem Freiraum.				
2	AGS	Sollte in 3D-Modell geprüft werden.				

9		Zwilling	sbereifung
Code	Benennung	Beschreibung	Darstellung
0	ohne	_	
1	mit	möglich nur bei Typen GS 11010 (8) und GS 12010	

10		Vorbereitung für Reif	fendruckregelsystem
0	ohne	-	
1	mit	möglich nur bei Typen GS 11010 (8) und GS 12010	63/4"

11		Sensor — SDS/ABS — Starrachse
Code		
0	ohne	_
A-	mit	mögliche Sensoren SDS/ABS — siehe Seite 107

12		Sensor — SDS/ABS — Lenkachse
Code		Darstellung/Beschreibung
0	ohne	_
Α-	mit	mögliche Sensoren SDS/ABS — siehe Seite 107

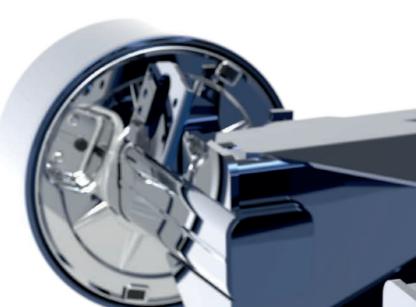
13		Sensor — Lenkwinkel
	Benennung	Darstellung/Beschreibung
0	ohne	_
A-	mit	mögliche Sensoren — siehe Seite 109 / möglich nur bei Typen GS 11010 (8) und GS 12010

15		Bremszylinder
0	ohne	_
1	mit	Bremszylindergröße wird durch die Bremsberechnung ermittelt

14		Zentralschmieranlage
Code	Benennung	Darstellung/Beschreibung
0	ohne	_
1	mit (für konkrete Schmierpunkte sind weitere Abstimmungen notwendig)	

72 | Aggregate

Pendelaggregat

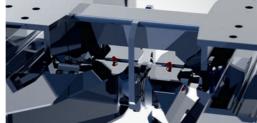

Die unendliche Kraft

BPW Pendelaggregate zeichnen sich durch einen sehr großen, seitenunabhängigen Ausgleich aus. So bleibt die Fahrhöhe auch bei unterschiedlichen Beladungszuständen gleich. Pendelaggregate sind sowohl für Offroad- wie Onroadeinsatz geeignet.

Weitere Merkmale

> Gleichbleibende Fahrhöhe, unabhängig von Beladungszustand

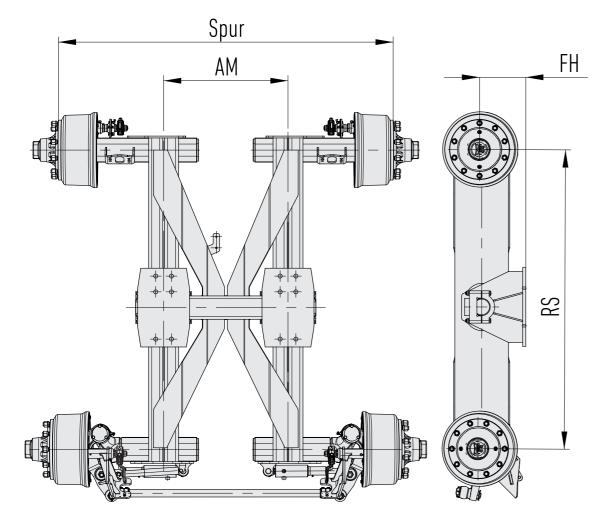
Entspricht den Anforderungen des Agrareinsatzes
 FEM-konstruiertes Design


Großer seitenunabhängiger Ausgleich

- > Leichtzügigkeit und gute Bodenanpassung
- > Wankstabil im schweren Offroadeinsatz

Asymmetrische Pendelstruktur

- Leichtzügigkeit und gute Bodenanpassung
- Keine Bremsüberlastung dank der optimalen Gewichtsverlagerung


Hochbelastbare Gleitlagerbuchse des Mittelachskörpers

- Sie profitieren von hoher Zuverlässigkeit und Belastbarkeit
- > Maximale Einsatzzeiten

74 | Aggregate

Pendelaggregat

	Achsquerschnitt	Statische Agg		• •	Fahrhöhe			
Achsentyp	(mm)	25 km/h	40 km/h	Bremse	FH (mm)	Radanschluss	Typencode	
				GSSTP(LS) 8008/8010				
GSSTP 8008	100	16.000	14.000	ungebremst	284	8 x M20 x 1,5 - 220/275	56.70.06-1-	
GSSTP 8008	100	16.000	14.000	N 4008-4	284	8 x M20 x 1,5 - 220/275	56.70.06-2-	
GSSTP 8008	100	16.000	14.000	N 3411	284	8 x M20 x 1,5 - 220/275	56.70.06-3-	
GSSTP 8010	100	16.000	14.000	ungebremst	284	10 x M22 x 1,5 - 280/335	56.70.06-4-	
GSSTP 8010	100	16.000	14.000	N 4008-4	284	10 x M22 x 1,5 - 280/335	56.70.06-5-	
				GSSTP(LS) 11008/11010				
GSSTP 11008	120 x 10(15)	21.000	20.000	ungebremst	280	8 x M20 x 1,5 - 220/275	56.88.06-1-	
GSSTP 11008	120 x 10(15)	21.000	20.000	FL 4112	280	8 x M20 x 1,5 - 220/275	56.88.06-2-	
GSSTP 11010	120 x 10(15)	21.000	20.000	ungebremst	280	10 x M22 x 1,5 - 280/335	56.88.06-3-	
GSSTP 11010	120 x 10(15)	21.000	20.000	FL 4112	280	10 x M22 x 1,5 - 280/335	56.88.06-4-	
				GSSTP(LS) 12010				
GSSTP 12010	150 x 16	27.000	27.000	ungebremst	280	10 x M22 x 1,5 - 280/335	56.72.06-1-	
GSSTP 12010	150 x 16	27.000	27.000	FL 4118	280	10 x M22 x 1,5 - 280/335	56.72.06-2-	

Spurweiten auf Anfrage.

Achslasten abhängig vom Verhältnis Spur/Federmitte und von der Bereifung.

2	RS — Radstand (mm) — GSSTP 8008 (10)
Code		Darstellung/Beschreibung
1	1.350	-
2	1.500	-
2	RS — Radstand (mm)	— GSSTP 11008 (10)
Code	Benennung	Darstellung/Beschreibung
1	1.300	max. Aggregatlast 18 t bei 40 km/h — möglich mit Lochbild 2
2	1.550	-
2	RS — Radstand (m	m) — GSSTP 12010
Code		Darstellung/Beschreibung
1	1.550	_
2	1.900	-

3	Kopfplatte	: — Lochbild
Code	Benennung	Darstellung/Beschreibung
0	ohne Bohrung	
1	mit Bohrung für GSTP 8008 (10)/11008 (10)	450 4x 0 25,5 (50) 350
2	mit Bohrung für GSTP 11008 (10)/12010	6 x Ø 26

Liste der Optionen

5		AM — Auflagemitte (mm)	
Code	Benennung	Darstellung/Beschreibung	
1	1.100	möglich nur bei Typ GSSTP 8008 (10)	
2	790		
3	890		
4	anderes Maß	Prüfung erforderlich	

6		Ausführung		
Code	Benennung	Darstellung/Beschreibung		
1	starre	Starrachse — Starrachse bei Radstand von 1.900 mm nicht möglich		
2	gelenkte	Starrachse — gelenkte		

7		Lenkachse
Code		
0	ohne	-
1	Nachlauflenkachse	-
2	Zwangslenkachse	-

9		Zwillings	bereifung
Code	Benennung	Beschreibung	Darstellung
0	ohne	_	
1	mit	möglich nur bei Typen GS 11010 (8) und GS 12010	

10		Vorbereitung für Reifendruckregelsystem		
0	ohne	_		
1	mit	möglich nur bei Typen GS 11010 (8) und GS 12010	63/4"	

11	Sensor — SDS/ABS — Starrachse	
Code		
0	ohne	-
Α-	mit	mögliche Sensoren SDS/ABS — siehe Seite 107

12	Sensor — SDS/ABS — Lenkachse	
Code		
0	ohne	_
Α-	mit	mögliche Sensoren SDS/ABS — siehe Seite 107

1		Sensor — Lenkwinkel
		Jensus — Lennwinner
Co		
0	ohne	-
A	- mit	mögliche Sensoren — siehe Seite 109, möglich nur bei Typen GS 11010 (8) und GS 12010

14		Zentralschmieranlage
Code	Benennung	Darstellung/Beschreibung
0	ohne	_
1	mit (für konkrete Schmierpunkte sind weitere Abstimmungen notwendig)	

15	Bremszylinder		
Code			
0	ohne	_	
1	mit	Bremszylindergröße wird durch die Bremsberechnung ermittelt	

AGRO Robust

Einfach unzerstörbar

30-t-Pendelaggregat von BPW. Größer. Stärker. Robuster. Für den extrem schweren Baustellenund Offroadeinsatz bietet BPW ein verstärktes und verlässliches Heavy-Duty-Pendelaggregat. Mit dem AGRO Robust Pendelaggregat setzen Sie auf BPW Qualität für höchste Belastungen.

Vorteile, die überzeugen

- > Sie profitieren von der hohen Belastbarkeit durch die verstärkten Achskörper und die besondere Konstruktion
- > Geringe Stillstandzeit dank der wartungsarmen Gleitlagerung
- > Höchste Zuverlässigkeit durch einen vergüteten Mittelachskörper
- > Ausgezeichnete Fahreigenschaften dank der asymmetrischen Pendelstruktur

vom Beladungszustand

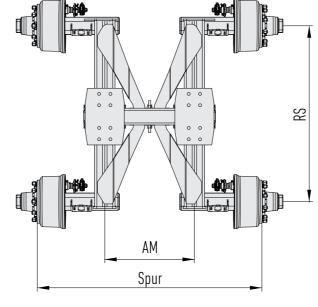
Ashaantuu	Achsquer-	A		Auflagemitte	Statische Achslast		Pahrhöhe		
Achsentyp	schnitt (mm)	Ausführung	Spur	AM (mm)	40 km/h	Bremse	FH (mm)	Radanschluss	Typencode
GSSTP 14010	150 x 20	А	1.900	790	30.000	FL 4118	280	M22 x 1,5 — 280/335	56.74.06-1-
GSSTP 14010	150 x 20	В	1.950	790	30.000	FL 4118	280	M22 x 1,5 — 280/335	56.74.06-2-
GSSTP 14010	150 x 20	А	2.050	890	30.000	FL 4118	280	M22 x 1,5 — 280/335	56.74.06-3-

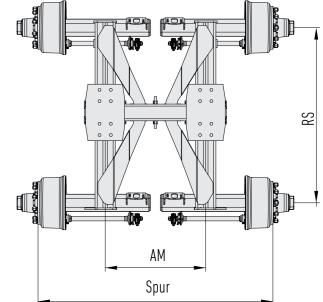
Achslasten abhängig vom Verhältnis Spur/Federmitte und von der Bereifung. Spurweiten auf Anfrage.

Gelenkte Ausführung auf Anfrage

Liste der Optionen

10	Vorbereitung für Reifendruckregelsystem				
Code	Benennung	Darstellung/Beschreibung			
0	ohne	-			
1	mit	_			


		Jelisoi — Judikus — Stai laciise
Code		Darstellung/Beschreibung
0	ohne	_
Α-	mit	mögliche Sensoren SDS/ABS — siehe Seite 107


14	Zentralschmieranlage			
Code				
0	ohne	_		
1	mit	_		

15		Bremszylinder		
Code				
0	ohne	_		
1	mit	Bremszylindergröße wird durch die Bremsberechnung ermittelt		

Ausführung A

Ausführung B

Luftfederaggregat

Technik in Vollendung

Mit unserer Luftfederung setzen Sie auf bewährte BPW Technik – und typische BPW Qualität, die für hohe Lebensdauer und Sicherheit steht. BPW Luftfederaggregate gewährleisten durch die großen Federwege und den Ausgleich zwischen den Achsen einen sehr hohen Fahrkomfort sowohl auf der Straße wie auch im Gelände.

Die BPW Luftfederung trägt zur Schonung des Rahmens, des Aufbaus und des Ladeguts bei.

Hinzu kommt eine hohe Wartungsfreundlichkeit

durch den modularen Aufbau.

Vorteile, die überzeugen

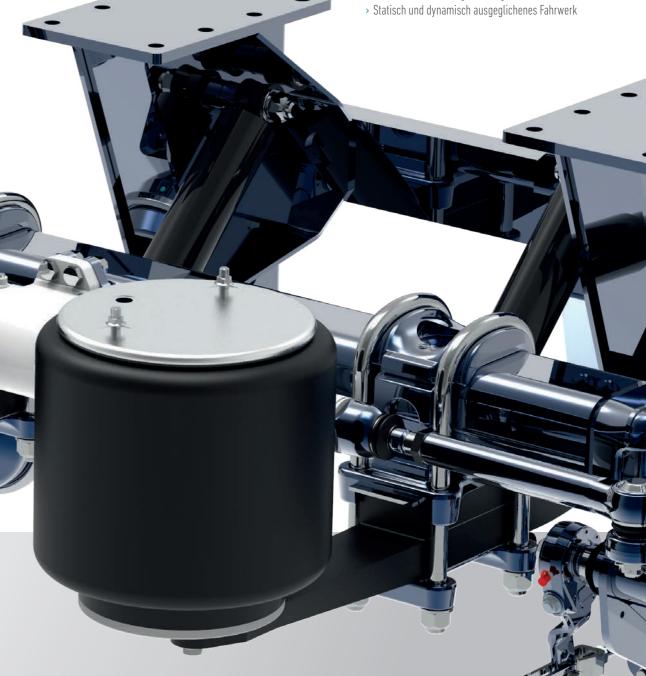
Großer Ausgleich zwischen den Achsen

- > Sie erfreuen sich am hervorragenden Fahrkomfort für Ihre Fahrzeuge
- Optimale Bodenanpassung
- > Schonung des Aufbaus

Gleichmäßige Lastverteilung auf alle Räder

- > Sie erreichen mit Ihrem Fahrzeug maximale
- Gleichmäßiger Reifenverschleiß auf allen Rädern

- Optimierte Schweißkonstruktionen

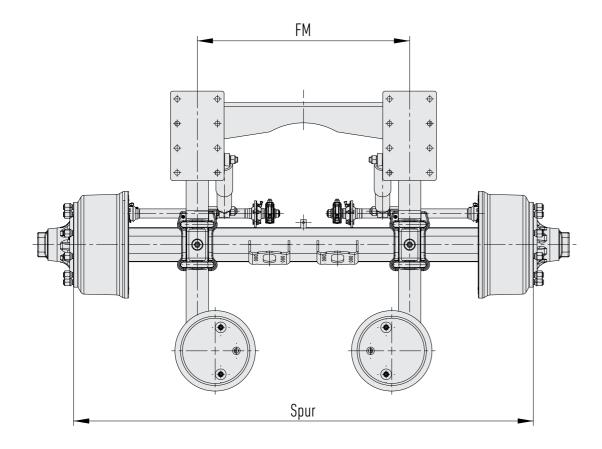


Spezielle **Achseinbindung**

- Sie profitieren von einer langen
- garantieren eine lange Lebensdauer
- Optimaler Kräftefluss

Weitere Merkmale

- > Konstante Fahrhöhe bei unterschiedlichen Beladungszuständen
- > Universelle Einsatzmöglichkeiten durch Einzelmodule
- > Verschiedene Lenkerfederausführungen
- > Erfüllt die Anforderungen des Agrareinsatzes

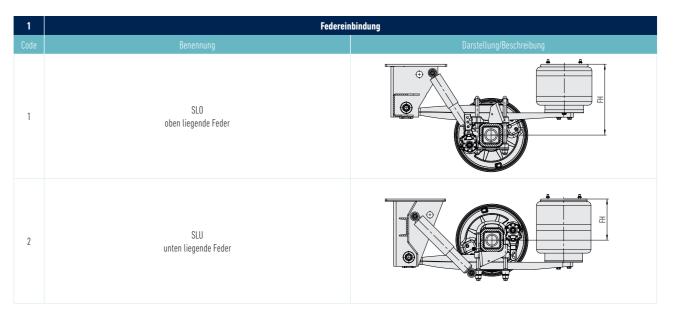


Modularer Aufbau

- > Servicefreundlich und weniger Verschleiß durch die Gummi-Stahl- Buchse
- > Sie verkürzen Ihre Durchlaufzeit dank der Montagefreundlichkeit
- > Sie profitieren von mehr Flexibilität in der Fertigung durch anschraubbare Stützen
- > Robuste Stützen für lange Lebensdauer

82 | Aggregate

Luftfederaggregat



	Achsauerschnitt		Statische Achslast (k	j)	Dadarahlura		•	
Achsentyp	Achsentyp (mm) 40 kr		60 km/h	80 km/h	Bremse	Radanschluss	Typencode	
				GSSLO/U 9008/9010				
GSSLO(U) 9008	110 x 14	8.500	8.000	-	ungebremst	8 x M20 x 1,5 — 220/275	56.76.01-1-	
GSSLO(U) 9008	110 x 14	8.500	8.000	-	N 3411-1	8 x M20 x 1,5 — 220/275	56.76.01-2-	
GSSLO(U) 9008	110 x 14	8.500	8.000	-	N 4012-4	8 x M20 x 1,5 — 220/275	56.76.01-3-	
GSSLO(U) 9010	110 x 14	8.500	8.000	-	ungebremst	10 x M22 x 1,5 — 280/335	56.76.01-4-	
GSSLO(U) 9010	110 x 14	8.500	8.000	-	N 3411-1	10 x M22 x 1,5 — 280/335	56.76.01-5-	
GSSLO(U) 9010	110 x 14	8.500	8.000	-	N 4012-4	10 x M22 x 1,5 — 280/335	56.76.01-6-	
				GSSL0/U 11008/11010				
GSSLO(U) 11008	120 x 15	10.000	9.000	-	ungebremst	8 x M20 x 1,5 — 220/275	56.88.01-1-	
GSSLO(U) 11008	120 x 15	10.000	9.000	-	N 4012	8 x M20 x 1,5 — 220/275	56.88.01-2-	
GSSLO(U) 11008	120 x 15	10.000	9.000	_	FL 4112	8 x M20 x 1,5 — 220/275	56.88.01-3-	
GSSLO(U) 11010	120 x 15	10.000	9.000	-	ungebremst	10 x M22 x 1,5 — 280/335	56.88.01-4-	
GSSLO(U) 11010	120 x 15	10.000	9.000	-	N 4012	10 x M22 x 1,5 — 280/335	56.88.01-5-	
GSSLO(U) 11010	120 x 15	10.000	9.000	_	FL 4112	10 x M22 x 1,5 — 280/335	56.88.01-6-	
				GSSL0/U 12010				
GSSLO(U) 12010	150 x 16	13.000	12.000	-	ungebremst	10 x M22 x 1,5 — 280/335	56.72.01-1-	
GSSLO(U) 12010	150 x 16	13.000	12.000	_	FL 4118	10 x M22 x 1,5 — 280/335	56.72.01-2-	
GSSLO(U) 12010	150 x 16	_	_	12.000	SN4220	10 x M22 x 1,5 — 280/335	56.72.01-3-	
				GSSL0/U 14010				
GSSLO(U) 14010	150 x 16	14.000	14.000	-	ungebremst	10 x M22 x 1,5 — 280/335	56.74.01-1-	
GSSLO(U) 14010	150 x 16	14.000	14.000	-	FL 4118	10 x M22 x 1,5 — 280/335	56.74.01-2-	
GSSLO(U) 14010	150 x 20	14.000	14.000	_	ungebremst	10 x M22 x 1,5 — 280/335	56.74.01-3-	
GSSLO(U) 14010	150 x 20	14.000	14.000	-	FL 4118	10 x M22 x 1,5 — 280/335	56.74.01-4-	

Spurweiten, Federmitten auf Anfrage.

Achslasten abhängig vom Verhältnis Spur/Federmitte und von der Bereifung.

Liste der Optionen

2	Lifta	chse
Code	Benennung	Darstellung/Beschreibung
0	ohne	
1	mit	

3		Kopfplatte — Lochbild
Code	Benennung	Darstellung/Beschreibung
0	ohne Kopfplatte	
1	mit Kopfplatte	400 400 110 110 110 110 110 110

Liste der Optionen

4	FH — Fahrhöhe (mm) — GS 9000						
Code		Darstellung/Beschreibung					
	Radstand (Feder)	SL	0	SLU			
	Stützenhöhe	ohne Platte	mit Platte	ohne Platte	mit Platte		
1	184	395—425	_	190—225	-		
2	268	425—505	_	225—305	-		
3	268	455—505		205-305	-		
4	FH — Fahrhöhe (mm) — GS 11000						
	Radstand (Feder)	SL	0	SLU			
	Stützenhöhe	ohne Platte	mit Platte	ohne Platte	mit Platte		
1	184	414—439	421—454	-	-		
2	268	474—523	480—538	217—267	224—282		
3	302	_	-	230—301	237—316		
4	370	-	_	283-369	290—384		
4	FH — Fahrhöhe (mm) — GS 12000/GS 14000						

4		FH — Fahrhöhe (mm) — GS 12000/GS 14000					
	Radstand (Feder)	SI	LO	S	LU		
	Stützenhöhe	ohne Platte	mit Platte	ohne Platte	mit Platte		
1	184	430—455	435—470	_	-		
2	268	488—538	495—553	175—252	182—267		
3	302	_	_	215—286	222—301		
4	370	_	_	268-351	275—370		

6	Ausführung					
Code						
1	1	starre				
2	2	gelenkte				

7		Lenkaci	hse
Code	Benennung	Beschreibung	Darstellung
0	ohne	_	_
1	Nachlauflenkachse	Arretierungszylinder — nur bis 12 t Achslast	
2	Nachlauflenkachse Nachlauflenkung	Kombizylinder — möglich nur bei Typen GS 11010 (8) und GS 12010	
3	Nachlauflenkachse Zwangslenkung	Kombizylinder — möglich nur bei Typen GS 11010 (8) und GS 12010	
4	Zwangslenkachse	möglich nur bei Typen GS 11010 (8) und GS 12010	

8	Bremshebel			
Code				
1	GSK	Verwendung von GSK oder AGS ist abhängig von der Grundplattenlösung, der Reifengröße und dem Freiraum.		
2	AGS	Sollte in 3D-Modell geprüft werden.		

9		Zwillingsbereifung					
Code	Benennung	Beschreibung	Darstellung				
0	ohne	_					
1	mit	bei Typ GS 9000 nicht möglich					

10		Vorbereitung für Reifendruckregelsystem					
Code							
0	ohne	-					
1	mit	bei Typ GS 9000 nicht möglich	Z119 - 7829				

11		Sensor — SDS/ABS — Starrachse
Code		Darstellung/Beschreibung
0	ohne	-
A-	mit	mögliche Sensoren SDS/ABS — siehe Seite 107

12		Sensor — SDS/ABS — Lenkachse
		Darstellung/Beschreibung
0	ohne	-
Α-	mit	mögliche Sensoren SDS/ABS — siehe Seite 107

13	Sensor - Lenkwinkel			
Code		Darstellung/Beschreibung		
0	ohne	_		
A-	mit	mögliche Sensoren — siehe Seite 109, möglich bei Typen GS 11010 (8) / GS 12010 / GS 14010		

14	Zentralschmieranlage					
Code			Darstellung			
0	ohne		-			
1	mit	bei Typ GS 9000 nicht möglich (für konkrete Schmierpunkte sind weitere Abstimmungen notwendig)				

15		Bremszylinder			
0	ohne	_			
1	mit	Bremszylindergröße wird durch die Bremsberechnung ermittelt			

Hydropneumatische Module

Nur für Maximalisten

Für Fahrzeuge mit besonderen Anforderungen an Wankstabilität, Fahrsicherheit und Komfort hat BPW Fahrwerke mit hydropneumatischer Federung im Programm. Sie zeichnen sich durch einen großen Ausgleich (ca. 270 mm) zwischen den Achsen bei gleicher Achslastverteilung aus. Dies gewährleistet ein sehr sicheres und gleichzeitig komfortables Fahren, insbesondere auch bei Anhängern, die aufgrund eines hohen Fahrzeugschwerpunktes ein kritisches Fahrverhalten aufweisen könnten.

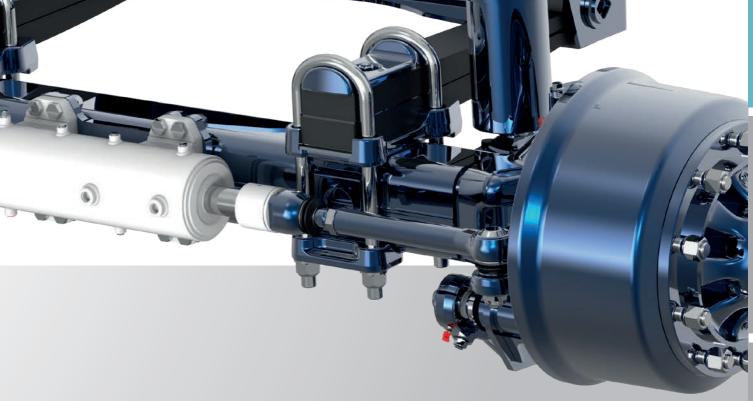
Weitere Merkmale

- > Universelle Einsatzmöglichkeiten durch Einzelmodule
- > Geprüfte und getestete Komponenten
- > Passive und elektronische Federungssteuerung möglich
- > Erfüllt die Anforderungen des Agrareinsatzes
- > Statisch und dynamisch ausgeglichenses Fahrwerk

Breite Abstützung der Zylinder

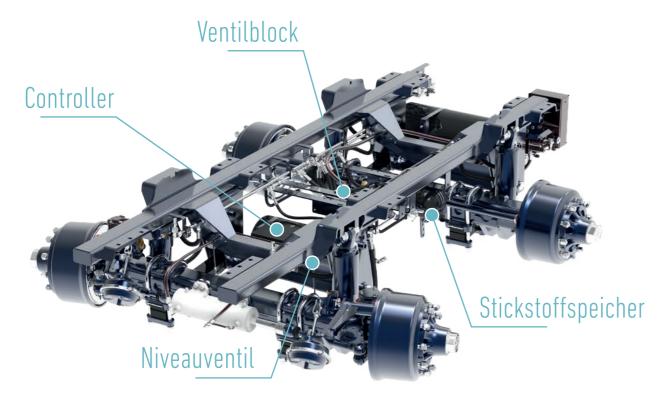
 Sie erzielen große Wankstabilität bei Ihrem Fahrzeug

Große Federwege und vollständiger, dynamischer Achsausgleich


- Kompromissloser Fahrkomfort und Ladegutschonung für Ihre Fahrzeuge
- > Leichtzügigkeit und gute Bodenschonung

Spezielle Achseinbindung

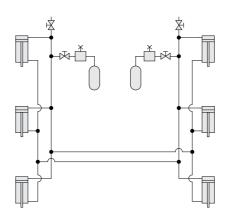
- Sie profitieren von einer langen Nutzungsdauer
- Optimierte Schweißkonstruktionen garantieren eine lange Lebensdauer
- > Optimaler Kräftefluss


- Servicefreundlich und weniger Verschleiß durch die Gummi-Stahl-Buchse
- Sie verkürzen Ihre Durchlaufzeit dank der Montagefreundlichkeit
- Sie profitieren von mehr Flexibilität in der Fertigung durch anschraubbare Stützen
- Robuste Stützen für lange Lebensdauer

88 | Aggregate

eHP – aktive und elektronische Federungssteuerung

Das elektronische Steuerungssystem für das bewährte hydropneumatisch gefederte BPW Fahrwerk ermöglicht ein sicheres und komfortables Fahrverhalten – auch in kritischen Fahrsituationen. Die Fahrhöhe wird elektronisch geregelt und bleibt auf diese Weise stets konstant, unabhängig vom Beladungszustand.



Funktionen

Gerade bei Güllefässern mit angebauten Bodenbearbeitungsgeräten ist eine konstante Fahrhöhe, unabhängig vom Beladungszustand des Fasses, entscheidend. Die aktive Niveauregulierung greift über einen Drehwinkelsensor die aktuelle Veränderung ab und regelt elektronisch – über den hydraulischen Steuerblock – die Anpassung an die definierte Fahrhöhe.

BPW Vorschlag zur Erhöhung der Wankstabilität: Kreuzschaltung

Während der Fahrt durch eine Kurve wird die äußere Fahrzeugseite durch auftretende Querkräfte mehr belastet. Aufgrund der korrespondierenden Leitungen wird das Fahrzeug immer versuchen eine parallele Stellung zum Boden einzunehmen.

Steuerungsoptionen

Basic-Steuerung

Sich verändernde Fahrhöhen bei Aggregatlaständerung. Keine Niveauregulierung des Systems. Diese Lösung kann als zweikreisige oder als Kreuzschaltung verwendet werden.

Systemkomponenten: Hydroakkumulator; Ölvorratsbehälter

Standardsvstem

Die Fahrhöhe ist in beladenem und unbeladenem Fahrzustand immer gleich, da das System die aktuelle Position über Winkelsensoren und einen Controller überprüft und jede Veränderung durch eine entsprechende Nachstellung des Ölstands durch die Hydraulik ausgleicht. Diese Lösung wird nur mit Kreuzschaltung realisiert.

Systemkomponenten: Hydroakkumulator; Winkelsensor; Steuerblock und Controller

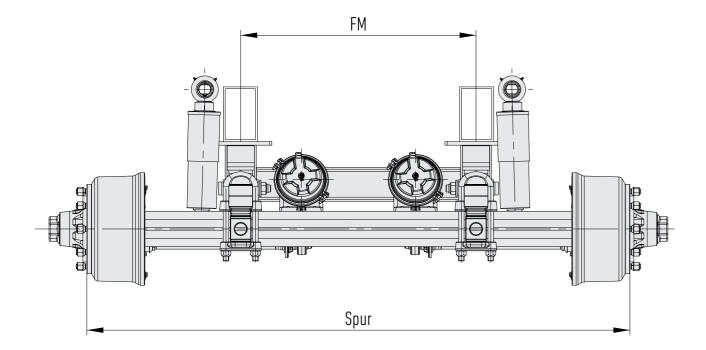
Premiumsystem

Die Fahrhöhe ist in beladenem und unbeladenem Fahrzustand immer gleich, da das System die akuelle Position über Winkelsensoren und einen Controller überprüft und entsprechend dieser Position den Ölstand im System durch die Hydraulik und damit die Fahrhöhe nachstellt. Diese Lösung wird nur mit Kreuzschaltung realisiert.

Die erste Achse kann bei einem Tridemfahrzeug als Liftachse angesteuert werden. Bei einem Tandemfahrzeug ist dies nur dann möglich, wenn die Hinterachse eine Starrachse ist. Wenn der Druck in dem System zu hoch ist, wird die Liftachsfunktion automatisch ausgeschaltet. Bei der Anfahrhilfefunktion ist die Lösung für ein Tandem- oder Tridemaggregat möglich.

Systemkomponenten: Hydroakkumulator; Winkelsensor; Steuerblock und Controller; Ventil für Anfahrhilfe; Bedienterminal

Vorteil


- Verbesserter Fahrkomfort
- Erhöhung der Fahrsicherheit
- Zusatzfunktionen parametrierbar
- Wankstabilisierung

Funktionen

- > Niveauregulierung
- Anfahrhilfe
- Liftachsfunktion
- Drei verschiedene Fahrhöhen einstellbar

Hydropneumatisches Aggregat

	Achsquerschnitt		Statische Achslast				
Achsentyp	(mm)	40 km/h	60 km/h	80 km/h	Bremse	Radanschluss	Typencode
				GSOH(LA) 11008/11010			
GSOH 11008	120 x 15	10.000	9.000	-	ungebremst	8 x M20 x 1,5 — 220/275	56.88.08-1-
GSOH 11008	120 x 15	10.000	9.000	_	FL 4112	8 x M20 x 1,5 — 220/275	56.88.08-2-
GSOH 11010	120 x 15	10.000	9.000	_	ungebremst	10 x M22 x 1,5 — 280/335	56.88.08-3-
GSOH 11010	120 x 15	10.000	9.000	_	FL 4112	10 x M22 x 1,5 — 280/335	56.88.08-4-
				GSOH(LL) 12010			
GSOH 12010	150 x 16	13.000	12.000	_	ungebremst	10 x M22 x 1,5 — 280/335	56.72.08-1-
GSOH 12010	150 x 16	13.000	12.000	_	FL 4118	10 x M22 x 1,5 — 280/335	56.72.08-2-
GSOH 12010	150 x 16	-	-	12.000	SN4220	10 x M22 x 1,5 — 280/335	56.72.08-3-
				GS0H(LL) 14010			
GSOH 14010	150 x 16	14.000	-	_	ungebremst	10 x M22 x 1,5 — 280/335	56.74.08-1-
GSOH 14010	150 x 16	14.000	-	-	FL 4118	10 x M22 x 1,5 — 280/335	56.74.08-2-
GSOH 14010	150 x 20	14.000	-	-	ungebremst	10 x M22 x 1,5 — 280/335	56.74.08-3-
GSOH 14010	150 x 20	14.000	-	-	FL 4118	10 x M22 x 1,5 — 280/335	56.74.08-4-

Spurweiten, Federmitten auf Anfrage.

Achslasten abhängig vom Verhältnis Spur/Federmitte und von der Bereifung.

Liste der Optionen

2	Zylinder	rposition
Code	Benennung	Darstellung/Beschreibung
1	HP-Zylinder vor der Achse	
2	HP-Zylinder auf der Achse	

Diese Option muss mit Technik abgestimmt werden.

3	Kopfplatte	— Lochbild
Code		
0	ohne Kopfplatte	-
1	mit Kopfplatte	400 110 110 110 110 110 110 110

Liste der Optionen

4		FH — Fahrhöhe (mm) — GS 11000				
Code		nung Darstellung/Beschreibung				
	Ausführung	F	FO	F	:U	
	Stützenhöhe	ohne Platte	mit Platte	ohne Platte	mit Platte	
0	ohne Stütze	Lenkerfeder wird auf der Achse montiert				
1	184	336	351	_	_	
2	268	420	435	_	_	
3	302	_	_	_	_	
4	370	-	-	-	-	

4	FH — Fahrhöhe (mm) — GS 12000				
	Ausführung Stützenhöhe	FO		FU	
		ohne Platte	mit Platte	ohne Platte	mit Platte
0	ohne Stütze	Lenkerfeder wird auf		f der Achse montiert	
1	184	356	371	_	_
2	268	440	455	_	_
3	302	474	489	194	209
4	370	-	_	262	277

4	FH — Fahrhöhe (mm) — GS 14000				
	Ausführung	FO		FU	
	Stützenhöhe	he ohne Platte mit Platte	ohne Platte	mit Platte	
0	ohne Stütze	Lenkerfeder wird auf der Achse montiert			
1	184	378	393	_	-
2	268	462	477	_	-
3	302	_	_	172	187
4	370	_	_	240	255

5		Zylindereinbaumaß
Code	Benennung	Darstellung/Beschreibung
1	577 mm HUB: 185 mm	277/5 vs
2	595 mm HUB: 210 mm	

6	Ausführung		
Code		Darstellung/Beschreibung	
1	starre	_	
2	gelenkte	_	

7	Lenkachse		
0	ohne	-	
1	Nachlauflenkachse	Arretierungszylinder — bei Typ GS 14000 nicht möglich	
2	Nachlauflenkachse	Kombizylinder	
3	Zwangslenkachse	Kombizylinder	

8		Ausführung		
Code	Benennung	Darstellung/Beschreibung		
1	GSK	Verwendung von GSK oder AGS ist abhängig von der Grund-		
2	AGS	plattenlösung, der Reifengröße und dem Freiraum. Sollte in 3D-Modell geprüft werden.		

9		Zwillings	bereifung
Code	Benennung	Beschreibung	Darstellung
0	ohne	-	
1	mit	-	

10	Vorbereitung für Reifendruckregelsystem				
	Benennung				
0	ohne	ohne			
1	mit	mít	63/4"		

11	Sensor — SDS/ABS — Starrachse	
0	ohne	_
A-	mit	mögliche Sensoren SDS/ABS — siehe Seite 107

			CONCOT CECTAES ECHACONICS
	Code		Darstellung/Beschreibung
	0	ohne	-
e Seite 107	Α-	mit	mögliche Sensoren SDS/ABS — siehe Seite 107

13		Sensor — Lenkwinkel		
0	ohne	-		
A-	mit	mögliche Sensoren — siehe Seite 109, möglich bei Typen GS 12010 und GS 14010		

15		Bremszylinder
Code		
0	ohne	-
1	mit	Bremszylindergröße wird durch die Bremsberechnung ermittelt

14		Zentralschmieranlage
Code	Benennung	Darstellung/Beschreibung
0	ohne	_
1	mit (für konkrete Schmierpunkte sind weitere Abstimmungen notwendig)	

AGRO FlexModul

Mehr als nur ein Modul

Der modulare Baukasten bei Luft- und HP-Federaggregaten mit der verlässlichen BPW Qualität wird bis heute hunderttausendfach eingesetzt. Mit dem AGRO FlexModul heben wir unser Modulkonzept auf die nächste Stufe. Mit integrierter Befestigung des hydraulischen Zylinders im L-Rahmen bieten wir eine Komplettlösung für Fahrzeughersteller. Durch dieses Design ist keine zusätzliche Schweißarbeit mehr notwendig, was dem Fahrzeughersteller höchste Flexibilität ermöglicht.

Vorteile, die überzeugen

Integrierte HP-Befestigung

- Sie benötigen keine zusätzlichen Schweißarbeiten
- Optimale Verbindung zwischen Achsaggregat und Aufbau
- Die FEM-geprüfte Rahmenkonstruktion sichert eine lange Lebensdauer

Kundenspezifisches Lochbild in L-Rahmen

- Sie sparen Zeit dank der guten Montagemöglichkeit
- > Vollkommen angepasst für Ihre Fahrzeuge
- > Ready-to-use-System

HP- oder Luftfederaggregat

- > Identische L-Rahmen für HP- und Luftfederung
- Sie profitieren von mehr Flexibilität in der Montane

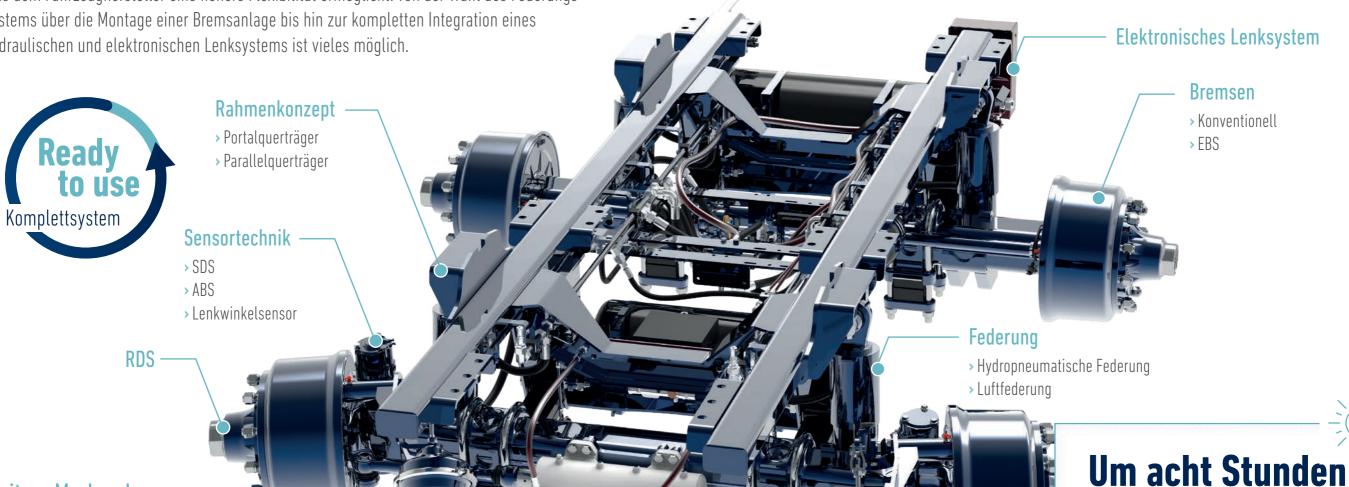
96 | Aggregate

AGRO FlexFrame

Das Rahmenaggregat

AGRO FlexFrame ist die BPW Antwort auf Tandem- und Tridemfahrwerk. Ein Konzept für den modernen Agrarfahrzeughersteller. Ein anwendungsspezifisch konstruierter Rahmen. Parallele Querträger für Kipper und Plateautransporter, portale Querträger für Güllefässer und Silotransporte.

Die Besonderheit macht das vereinheitlichte Verbindungskonzept zum Fahrzeugrahmen aus. Durch 22 M20-Schrauben wird das gesamte Fahrwerk mit dem Fahrzeugrahmen verbunden. Durch dieses Komplettsystem mit zahlreichen Optionen wird die Lieferzeit deutlich reduziert, was dem Fahrzeughersteller eine höhere Flexibilität ermöglicht. Von der Wahl des Federungssystems über die Montage einer Bremsanlage bis hin zur kompletten Integration eines hydraulischen und elektronischen Lenksystems ist vieles möglich.


Portalguerträger:

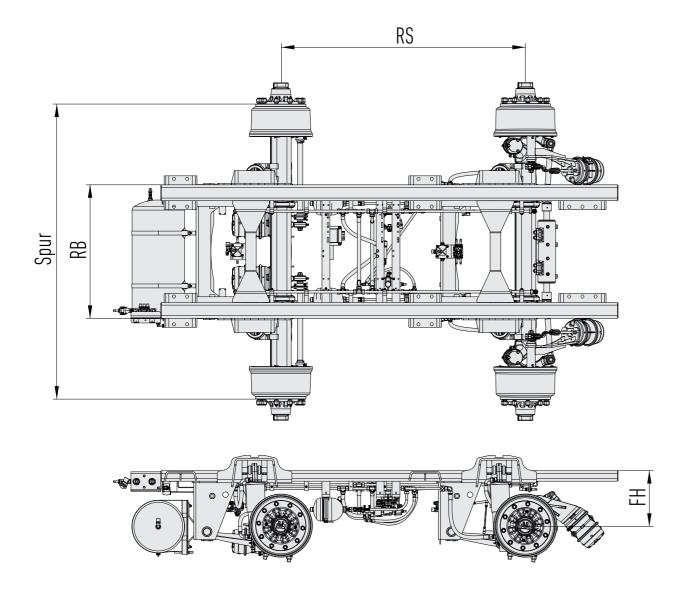
> optimierte Ausführung für Güllefässer

Parallelguerträger:

> optimierte Ausführung für Kipper

kürzere Montagezeit, bis zu 10% geringere Kosten

> Verkürzte und flexible Lieferzeit


> FEM-geprüfte Rahmenkonstruktion

Weitere Merkmale

- > Dokumentierte Schwellzeitmessung
- > Erhöhte Flexibilität durch Nachlauflenkung/Zwangslenkung
- > Upgrade mit Komponenten von Premiumpartnern

98 | Aggregate

AGRO FlexFrame

	I nniithiitella I aireana	Achsquerschnitt (mm)	Statische Aggregatlast	Bremse	Spur (mm)	Radstand RS (mm)	Rahmenbreite RB (mm)	Typencode
Federung			40 km/h					
HP	Tandem	150 x 16	24.000	FL 4118	2.225	1.850	1.010	56.72.08-R1-
HP	Tandem	150 x 16	24.000	FL 4118	2.200	2.000	970	56.72.08-R2-
HP	Tandem	150 x 16	24.000	FL 4118	2.100	2.000	870	56.72.08-R3-
Luft	Tandem	150 x 16	24.000	FL 4118	2.225	1.850	1.010	56.72.02-R1-
Luft	Tandem	150 x 16	24.000	FL 4118	2.150	1.850	1.010	56.72.02-R2-
Luft	Tandem	150 x 16	24.000	FL 4118	2.050	1.850	835	56.72.02-R3-
HP	Tridem	150 x 16	36.000	FL 4118	2.200	1.850	970	56.72.08-R4-

AGRO FlexFrame Tandemsusführung wird immer mit einer Starrachse und einer Lenkachse (AGRO Turn) gefertigt.
AGRO FlexFrame Tridemausführung wird immer mit einer Starrachse und zwei Lenkachsen (AGRO Turn) gefertigt.
Achslasten abhängig vom Verhältnis Spur/Federmitte und von der Bereifung.
Weitere Ausführungen auf Anfrage.

Liste der Optionen

1		HP-Federung
Code		Darstellung/Beschreibung
0	ohne	_
1	HP-Basic	Hydroakkumulator; Ölvorratsbehälter
2	eHP-Standard	Hydroakkumulator; Winkelsensor; Steuerblock und Controller
3	eHP-Premium	Hydroakkumulator; Winkelsensor; Steuerblock und Controller; Ventil für Anfahrhilfe; Bedienterminal

2		Luftfederung
Code		
0	ohne	_
1	Basic	Luftfederventil
2	Anfahrhilfe	Luftfederventil; Magnetventil; Bedienterminal
3	Heben und Senken	Luftfederventil; Magnetventil; Drehschieberventil

3		Bremssystem
Code	Benennung	
0	ohne	ohne Bremsanlage und Bremszylinder
1	konventionell	Bremsanlage und Tristopzylinder
2	EBS	EBS-System und Tristopzylinder und AGS. EBS-Möglichkeit muss immer geprüft werden.

4	Bremshebel		
Code			
1	GSK	-	
2	AGS	-	

6		Sensor — SDS/ABS — Starrachse
0	ohne	_
A-	mit	mögliche Sensoren SDS/ABS — siehe Seite 107

5	Vor	bereitung für Reifendruckregelsystem
Code	Benennung	Darstellung/Beschreibung
0	ohne	_
1	mit	.7.119

7	Sensor — SDS/ABS — Lenkachse	
0	ohne	_
Α-	mit	mögliche Sensoren SDS/ABS — siehe Seite 107

8	Sensor — Lenkwinkel		
0	ohne	_	
Α-	mit	mögliche Sensoren — siehe Seite 109	

9		Elektronisches Zwangslenksystem
0	ohne	-
1	nur Vorbereitung	Drehzahlsensor und ABS-Sensor mit Polrad 100 Zähne an der starren Achse und ME-Lenkwinkelsensor
2	mit	Ventilblock, Lenkcomputer mit Druckgussgehäuse und Kabel, Schwerlastwinkelgeber, Adapterkabel, Membrandruckschalter und Bedienterminal

SENSORTECHNIK

Innovation auf den Punkt gebracht

Nach unserer Philosophie bilden Menschen und Maschinen eine perfekte Einheit, für die nichts unmöglich ist. Um diese Symbiose zu verwirklichen, haben wir ein zukunftsweisendes Ziel: Unsere Achsen und Aggregate sollen smarter, intelligenter und kommunikationsfähiger werden.

Neben der kontinuierlichen Weiterentwicklung und der Verbesserung unserer Komponenten kommt auch den elektronischen Bauteilen und ihrer leichten Integrierbarkeit eine wachsende Bedeutung zu. Durch diese Komponenten können wir dem Fahrzeughersteller oder dem Endanwender spezifische Signale zur Verfügung stellen.

Uns ist es wichtig, dass die Informationen des Fahrwerks für die Arbeit genutzt werden können. Die beim Fahren ermittelten Werte führen in der Anwendung zu einem sichtbaren Effekt, indem z. B. Arbeit planbarer wird.

Unsere Kompetenzen

- Eigene Sensorentwicklung: Drehzahlsensor mit Drehrichtungserkennung oder Achslastsensor
- Komplett ISOBUS-fähiges Wiegesystem mit eigenem Algorithmus und Applikation
- > End-of-Line getestete und geprüfte Produkte
- > Einbaufertiges elektronisches Zwangslenksystem von Mobil Elektronik
- Verschiedene Testfahrzeuge, um die neu entwickelten elektronischen Produkte auch in der Praxis testen zu können

Radsensoren

In jeder Hinsicht eine runde Sache

Radsensoren erfassen die Drehbewegung der Räder. Diese Information dient zahlreichen Sicherheitsund Assistenzsystemen als wichtige Regelgröße. BPW Achsen und Aggregate können bis auf wenige Ausnahmen optional mit fertig montierten ABS- oder SDS* bestellt werden.

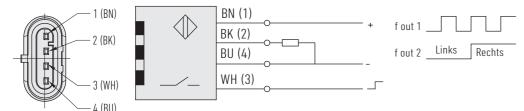
*Drehzahlsensor mit Drehrichtungserkennung (Speed and Direction of rotation Sensor)

ABS

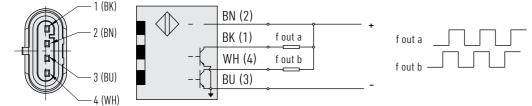
Das Antiblockiersystem (ABS) sorgt für einen kurzen Bremsweg, bestmögliche Fahrstabilität und Lenkbarkeit – bei Zugfahrzeugen und Anhängern. Starkes Bremsen erfolgt ohne blockierende Räder, das mindert den Reifenverschleiß. Hohe ABS-Funktionssicherheit dank Sensorpositionierung in biegeneutraler Achsmitte, keine Luftspieländerungen bei wechselnden Achsbelastungen.

SDS

Der Drehzahlsensor mit Drehrichtungserkennung ist ein selbst entwickeltes BPW Produkt. Er ist ein wichtiges Element der elektronischen Zwangslenksysteme. Das Sensorsignal kann außerdem für die Optimierung von Ausbringmengen verwendet werden. Ein an die Anforderungen angepasster Sensorhalter schützt den Sensor gegen Verdrehen. Dies bietet eine höhere Funktionssicherheit.


Vorteile, die überzeugen

- Spezielle Halter gegen Verdrehung und andere mechanische
 Beanspruchungen garantieren maximale Zuverlässigkeit und Lebensdauer
- > Funktionsfähigkeit auch bei niedrigen Geschwindigkeiten (> 1 km/h)
- > BPW Lösung ohne zusätzlichen Montageaufwand


Weitere Merkmale

- Separate Kanäle für Geschwindigkeit und Drehrichtung garantieren eine vollständige Detektierung (PNP)
- > Kompatibel mit allen gängigen Zwangslenksystemen
- > Digitaler Ausgang für eindeutiges Signal

Typ PNP: Separate Kanäle für Geschwindigkeit und Drehrichtung

Typ NPN: Drehrichtung soll durch Softwaretechnik erkannt werden

SDS technische Spezifikationen

	PNP	NPN	
Ausgang	4-Draht-PNP-Impulsausgang	4-Draht-NPN 2 Kanal mit Phasenverschiebung	
Betriebsspannung	10—3	80 VDC	
Spannungsabfall	≤ 2,4 V	≤ 0,4 V	
maximaler Laststrom	200 mA		
Leerlaufstrom	≤ 3	D mA	
Nutzbare Schaltfrequenz	5.00	00 Hz	
EMV - Beständigkeit	nach DIN EN 60947-5-2 2008-08		
Schutzart	IP 67 nach DIN EN 60529		
Anschlussart	400-mm-Kabel mit Superseal 4-polig	400-mm-Kabel mit Superseal 4-polig*	

^{*}Kabel mit gelbem Schrumpfschlauch markiert.

Sensormatrix für Starrachse

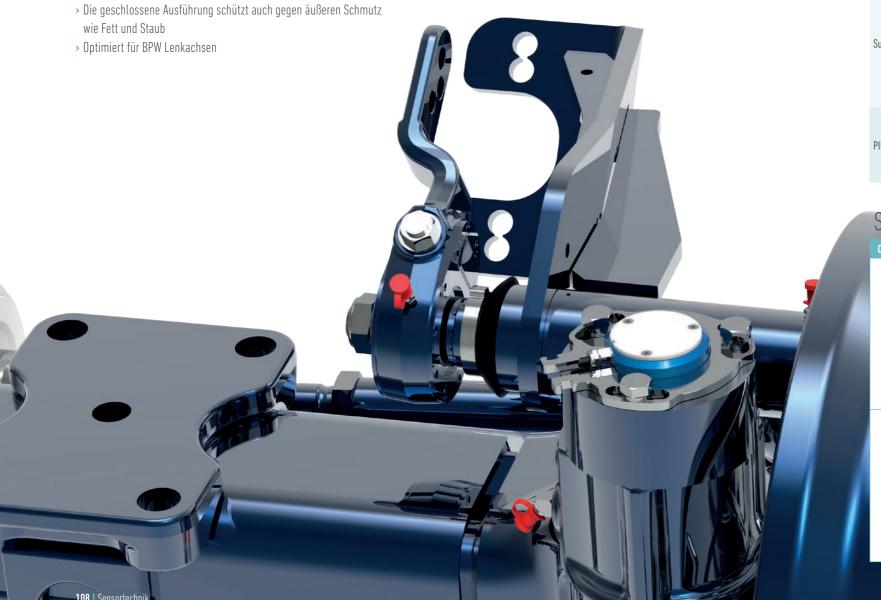
Weitere Möglichkeiten auf Anfrage

Sensormatrix für Lenkachse

Links	Rechts	Code
Z100 + SDS	0	A
Z100 + SDS	Z100 + SDS	В
Z100 + ABS	Z100 + ABS	С
Z120 + ABS	Z120 + ABS	D
Z100 + SDS + ABS	Z100 + SDS + ABS	E
Z120 + SDS + ABS	Z120 + SDS + ABS	F

Weitere Möglichkeiten auf Anfrage.

Adapter für Lenkwinkelsensor


Einwandfrei integriert

BPW hat für die **AGRO Turn** Lenkachse und die **GS(H)LL 14010 Lenkachse** eine integrierte Lösung für Lenkwinkelsensoren entwickelt. Mit diesem **Adapter** (optional inklusive Sensor) erhalten Sie eine Komplettlösung für verschiedene Anwendungen wie z. B. elektronische Zwangslenksysteme. Dank der geschützten Einbaulage ist eine höchstmögliche Funktionssicherheit gewährleistet.

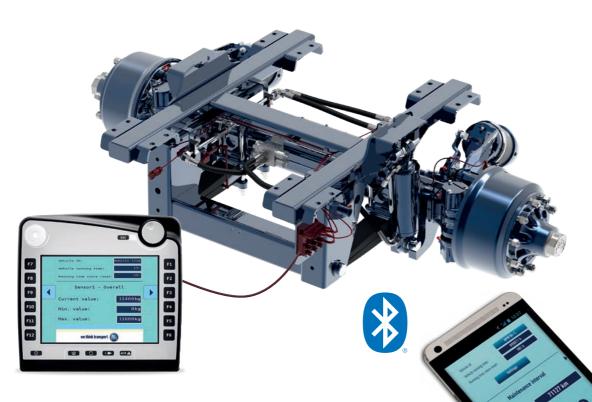
Vorteile, die überzeugen

- > Geschütztes Design garantiert hohe Zuverlässigkeit und eine lange Lebensdauer
- > Spezielle Adaptergeometrie für eine einfache Einstellung der Sensoren
- > Mechanische und elektronische Stabilität auch bei härteren Einsätzen

Weitere Merkmale

Einbaumöglichkeiten für ME-Sensoren

- > Einfache Einstellung
- > Sensor voreingestellt
- » "Ready to use" in Verbindung mit elektronischem Lenksystem der Firma ME Mobil Elektronik


	Mit Spannur	gsausgang	Mit Stron	nausgang	
Versorgungsspannung		9–	-34 V		
Stromaufnahme	max. 2	5 mA	max. 60 mA		
Ausgangsbereich	0,25—	4,75 V	4-2	0 mA	
Messbereich	2x 70 ° (0°± 35 °	für 2,5 V ± 2,25 V)	2x 70°(0°± 35 ° f	ür 12 mA ± 8 mA)	
Wiederholgenauigkeit	≤ 0,1 % bei spielfreier und ze	ntrischer Lagerung bauseits	< 0,2 % des Messbereichs bei spielfreier und zentrischer Lagerung bausei		
Temperaturbereich		-30—	J° 08+ -		
Kabellänge	2,0	m	0,0	0,3 m	
Gehäuse		IP6K6K/IP6x8 (1 m; 12 h)/IP6K9K			
Anschluss-Stecker	IP6K6K/IPx7/IPx9K im gesteckten Zustand				
Superseal			PIN 4 PIN 3	PIN 2 PIN 1	
	PIN 1	+UB	PIN 1	GND	
PIN-Belegung	PIN 2	OUT A	PIN 2	+UB	
r in-beteguily	PIN 3	OUT B	PIN 3	OUT A	
	PIN 4	GND	PIN 4	OUT B	

Sensormatrix für Lenkwinkelsensor

Code	Beschreibung	Bild	Code	Beschreibung	Bild
1	Adapter für ME-Sensor (ohne Sensor)		3	ME-Sensor installiert (Stromausgang)	
2	ME-Sensor installiert (Spannungsausgang)		4	Adapter für ELOBAU-Sensor (ohne Sensor, Adapter ist kompatibel mit verschiedenen ELOBAU-Lenkwinkelsensoren)	

AGRO Hub

Erfolg ist messbar

Kommunikation mit ISOBUS und App zum Anzeigen von Achslasten und Laufleistung des Anhängers

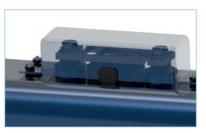
Der AGRO Hub mit Achslastsensor wurde unter Berücksichtigung der Charakteristiken und des Verhaltens der Achskörper entwickelt und abgestimmt.

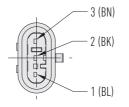
Stabiles Signal in schwieriger Offroadumgebung:

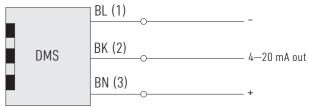
speziell befestigte DMS, um Sensorbewegungen zu vermeiden und ein stabiles Signal zu senden.

Glättung der Messergebnisse bei fahrdynamischen Einflüssen:

Der AGRO Hub Algorithmus berücksichtigt bei dynamischen Messungen durch Bodenunebenheiten verursachte Einflüsse.


Außerdem bietet der AGRO Hub eine genaue Übersicht über die Laufleistung des Fahrwerks. Die integrierten Sensoren ermitteln die Gesamtlaufleistung und die Tageslaufleistung. Der Fahrzeughalter oder der jeweilige Fahrer kann sich Betriebsstunden oder Kilometerlaufleistung anzeigen lassen.


Mit Hilfe von Diagrammen lässt sich die Fahrzeugverwendung schnell und genau nachvollziehen. Die Anzeige erfolgt über die BPW AGRO App (Android), die kabellos mit dem AGRO Hub verbunden werden kann. Das System bietet darüber hinaus ISOBUS-Kommunikationskanäle.


Funktionen

- > ISOBUS-Kommunikation
- > Kabellose Kommunikation mit kostenloser Android App
- > Gesamtgewichtmessung
- > Kilometerstand, durchschnittliche Geschwindigkeit, aktuelle Geschwindigkeit

BPW Achslastsensor

8-30 VDC
4-20 mA
< 10 mA
-40-+70 °C
nach EN ISO 14982:1998
IP 67 nach DIN EN 60529
3-pol. AMP Superseal

Vorteile, die überzeugen

- > Dynamische Gesamtgewichtsmessung
- > Optimale Betriebskosten durch Überwachung des Gesamtgewichts und der Nutzlast
- Der speziell für BPW Achsen entwickelte Achslastsensor zeichnet sich durch sehr hohe Zuverlässigkeit und Messgenauigkeit aus
- > Stabiles Signal bei extremen Temperaturschwankungen
- > Einfache Kalibrierung

Produktmatrix

Achsquerschnitt/ Achsentyp	Achslast	120x10	120x15	150x10	150x16	150x20
GS(LA) 11000	10—11 t	Х	Х	-	_	_
GS(LL) 12000	12—13 t	_	_	Х	Χ	
GS(LL) 14000	14—15 t	_	_		Χ	Х

Mit folgenden Federungen möglich

- ➤ Mechanische VB
- Boogie

Pakete

Paket 1

Anzahl Achslastsensoren (DMS)
1
2
3

^{*} Lieferzustand: DMS wird auf der Achse montiert.

Paket 2

I diver Z						
Komponenten Fahrzeug	Anzahl Achslastsensoren	Anzahl SDS	Anzahl Hub	Anzahl Messverstärker	Kabelsatz	Notwendige Messzugöse (Stk.) (nicht im BPW Lieferumfang)
Einachser	1	2	1	1	Kabelsatz 1	1
Tandem	2	2	1	1	Kabelsatz 2	1
Tridem	3	2	1	1	Kahelsatz 2	1

^{*} Lieferzustand: DMS und SDS werden auf die Achse montiert.

Hub und Messverstärker entweder lose oder mit Komplettaggregat ausgeliefert.

Kabelsatz beinhaltet alle nötigen Verlängerungskabel.

Scan mich!

Hier erfahren Sie noch mehr zum Produkt AGRO Hub.

BPW Alleinstellungsmerkmale

Was unsere Produkte einzigartig macht

Fahrwerke von BPW bieten robuste Technik für ein langes Fahrzeugleben. Jede Eigenschaft der Achsen ist auf die schwierigen Aufgaben und Herausforderungen des Agrarbereichs abgestimmt.

Quadratische Achskörper

Zusammen mit unseren Bremsen und Federungen bildet der Vierkantachskörper eine stabile Basis für ein langes Fahrzeugleben. Er verfügt über eine extrem hohe Widerstandsfähigkeit gegenüber allen Biege- und Torsionsbeanspruchungen, was zahlreiche Belastungsprüfungen, Dauertestserien und Langzeitfahrversuche beweisen. Er besitzt auch hohe Sicherheitsreserven im Fall einer kurzfristigen und extremen Überlastung.

Neben dem bewährten Massivachskörper fertigt BPW seit Jahrzehnten auch Hohlachskörper. Der quadratische BPW Hohlachskörper besteht aus zwei hochwertigen, spezialgewalzten Achsrohrhälften, die innen und außen zusammengeschweißt sind. Besonderes Merkmal des BPW Standardachsrohrs ist seine Profilform: mehr Material in den Eckradien und weniger Material im

Extreme Stabilität

und höchste Zuverlässigkeit

oberen und unteren Bereich. Die Achsquerschnitte sind somit an den belasteten Stellen verstärkt und besitzen höchste Steifigkeit mit geringem Eigengewicht für große Nutzlasten. BPW Achsrohre sind – abgestimmt auf Achslast und Einsatzbedingungen – in verschiedenen Achsquerschnitten und Wandstärken erhältlich.

Vorteile, die überzeugen

- > Hohlachskörper mit geringem Eigengewicht bei höchster Steifigkeit für große Nutzlasten
- Das Zusammenfügen von vergütetem Achsschenkel und quadratischem Achskörper durch Abbrennstumpfschweißen gewährleistet eine einzigartig sichere Verbindung und höchste Lebensdauer
- > Leichte Montage/Demontage der Radnabe durch abgestufte Lagersitze am Achsschenkel

Achsschenkel und Achsrohr

Der **BPW Achsschenkel** ist aus einem BPW spezifischen vergüteten Material gefertigt. Die optimale, der Beanspruchung angepasste Formgebung des Achsschenkels und des quadratischen Achsrohrs sowie die Werkstoff—auswahl sorgen für eine hohe Lebensdauer der Achsen.

Beim Abbrennstumpfschweißen werden Achsschenkel und Achsrohr zu einem "Stück" verbunden. Bei diesem Schweißverfahren werden Achsrohr und Achsschenkelenden durch einen Stromfluss im Verbindungsbereich auf Schweißtemperatur erhitzt und unter Krafteinwirkung zusammengestaucht. Es entsteht eine absolut homogene Verbindung ohne störende Kerbwirkung.

KTL-Oberflächenveredelung

Ein wichtiges Qualitätsmerkmal unserer Produkte ist die Kathodische Elektrotauchlackierung mit Zinkphosphatierung (KTL). Dieses computergesteuerte Beschichtungsverfahren ist eine spezielle Oberflächenveredelung, die für einen fünffach höheren Korrosionsschutz sorgt als herkömmliche Lackierverfahren.

Von der Achse bis zum kompletten Rahmenaggregat erhalten BPW Produkte serienmäßig eine KTL-Beschichtung.

Überlackierungen

sind – bei individuellen Anforderungen an Glanzgrad und Farbton – mit kostengünstigen Decklacksystemen **möglich**.

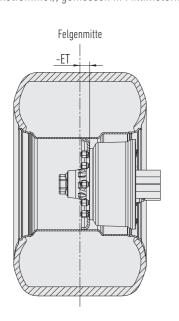
Vorteile, die überzeugen

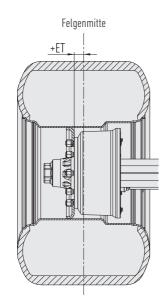
- » Minimale Korrosionsunterwanderung, z.B. bei Beschädigung der Oberfläche durch Steinschlag oder Splitt
- > Längere Lebensdauer des kompletten BPW Fahrwerks
- > Hervorragende Optik: tropfen- und läuferfreie Oberflächen bei gleichmäßiger Schichtdicke
- > Große Oberflächenhärte: weniger Transport- und Montageschäden
- Weniger Wartungs- und Reparaturaufwand
- Hohe Hitzebeständigkeit
- > Umweltfreundliche Beschichtungsverfahren: kein Freisetzen umweltbelastender Stoffe

114 | Technik und Support

BPW Alleinstellungsmerkmale

Was unsere Produkte einzigartig macht


Lagersystem


Analog zur bewährten Technik aus dem Schwerprogramm. Speziell nach BPW interner Werksnorm entwickelte und durchgehend geprüfte Kegelrollenlager, die in BPW Langzeitfahrversuchen und Dauertestserien getestet wurden. Die Lagerung weist neben der Langlebigkeit einen geringen Rollwiderstand auf.

Sichere Fahrt. Lange Lebensdauer und geringer Rollwiderstand.

Einpresstiefe

Mit der Einpresstiefe eines Rades wird der Abstand zwischen Felgenmitte und der inneren Auflagefläche der Felge auf der Radnabe (oder Bremstrommel), gemessen in Millimetern, bezeichnet.

Bei einer Einpresstiefe von 0 ist die Mitte der Reifenlauffläche symmetrisch zur Befestigungsebene der Felge an der Radnabe (oder Bremstrommel). Bei einer positiven Einpresstiefe (z. B. +25 mm) ist die Auflagefläche gegenüber der Felgemitte nach außen verschoben, das Spurmaß (SP) wird somit kleiner. Bei einer negativen Einpresstiefe (z. B. -25 mm) verschiebt sich die Auflagefläche (Felgenflansch) nach innen und vergrößert somit das Spurmaß.

BPW Agrarachsen sind in der Regel für Felgen mit Einpresstiefe O ausgelegt. Bei Felgen mit Einpresstiefe (positiv oder negativ) verändert sich die sogenannte Raddrucklinie, was zur Folge hat, dass das jeweilige Radlager (ET positiv – inneres Lager, ET negativ – äußeres Lager) höher belastet wird. Dies kann unter Umständen zu einer Reduzierung der Achslast führen.

Bei Verwendung von Felgen mit Einpresstiefe sollten Sie Rücksprache mit BPW halten.

Vorspur und Sturz

Bei jedem BPW Achskörper sind Sturz und Vorspur ab Werk voreingestellt. Vorspur und positiver Sturz bieten ein sicheres Fahrverhalten. Zudem ergibt sich neben einem gleichmäßig reduzierten Reifenverschleiß eine Senkung der Betriebskosten.

Positiver Sturz – Fahrzeug unbeladen

Als Sturz wird der Winkel zwischen Radmittelebene und einer Senkrechten zur Fahrbahnebene definiert. Der Sturz ist positiv, wenn das Rad im unbeladenen Zustand nach außen geneigt ist.

Durch die Biegebelastung des Achskörpers bei beladenem Fahrzeug stellt sich das Rad gerade und gewährleistet somit in diesem verschleißkritischen Fahrzustand einen optimalen Reifenablauf. Ungleichmäßiger, frühzeitiger Reifenverschleiß wird vermieden.

Vorspur

Die Spur ist der Winkel, der sich zwischen der Fahrzeuglängsachse und der Radmittelebene ergibt. Wenn der vordere Teil des Rades der Fahrzeuglängsachse zugeneigt ist – d. h., der Reifenabstand vorn ist geringer als der hinten –, wird von einer Vorspur gesprochen. Im Fahrbetrieb bewirkt der Rollwiderstand der Reifen, dass der Winkel wieder 0° beträgt und damit ein stabiler Geradeauslauf garantiert ist. Ohne Vorspur haben die Räder die Tendenz, nach außen zu laufen.

Vorteile, die überzeugen

- > Maximaler Fahrbahnkontakt, maximale Reifenschonung
- Positive Sturzeinstellung sorgt für maximalen Fahrbahnkontakt der Reifen im beladenen Fahrzeugzustand, optimalen Reifenablauf und Vermeidung von ungleichmäßigem, frühzeitigem Reifenverschleiß
- > Exakt eingestellte Vorspur bietet stabilen Geradeauslauf
- > Geringere Betriebskosten und mehr Fahrsicherheit

Unsere Dienstleistungen

Wir arbeiten für Sie

Vertrieb und Auftragslogistik

All-inclusive-Kontakt

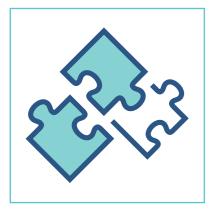
Unsere Kompetenzen:

- umfassende Unterstützung
- > schnelle Reaktion auf Kundenwünsche
- professionelle Organisierung

Ihre Vorteile:

- optimierte Durchlaufzeit
- fester, persönlicher Ansprechpartner
- > Flexibilität bei der Bestellung

Anwendungsberater


Spezialisten für Agrarfahrzeuge

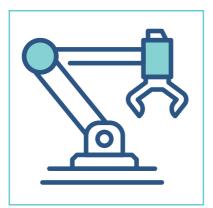
Unsere Kompetenzen:

- > Passende Komponenten, Achsen und Federungen für Ihre Fahrzeuge
- > Sicherstellung der Kompatibilität zwischen verwendeten Komponenten und Systemen

Ihre Vorteile:

- > Erfahrene Ingenieure beraten Sie beim Engineering Ihrer Fahrzeuge
- > Wir helfen Ihnen bei der Navigation durch das vielfältige Produktprogramm im Markt
- > Präsentation unserer neu entwickelten Produkte
- > Unterstützung bei der Inbetriebnahme

Konstruktion


Alles aus einer Hand

Unsere Kompetenzen:

- Weiterentwicklung von Komponenten
- > Entwicklung eines kompletten neuen Aggregats
- Zeit- und Kostenersparnis
- > Absicherung Ihrer Konstruktion und somit Vermeidung von Reklamationen

Ihre Vorteile:

- > FEM-konstruierte Komponenten und Systeme
- > In unserem Prüfstand werden die im Betrieb auf das Fahrwerk wirkenden Vertikal-, Quer- und Längskräfte wie auch Brems- und Lenkmomente simuliert
- > Brems- und Lagerberechnung
- Testfahrzeug
- Bremsprüfstand

Fertigung

Qualität und Wirtschaftlichkeit

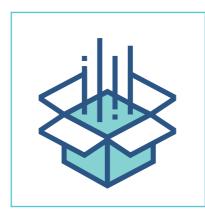
Unsere Kompetenzen:

- > Konzentration auf eigene Kernkompetenzen
- Verbesserung der Durchlaufzeit
- > Optimierung der Bevorratung und Lagerhaltung
- > Vermeidung von eigenen Produktionsrisiken

Ihre Vorteile:

- > langjährige Erfahrung, insbesondere in mechanischer Bearbeitung
- > Oberflächenbehandlung und Montage
- > verschiedene Qualitätssicherungszertifikate
- produktspezifische Montagestelle
- flexible Priorisierung

Kundendienst


Mobilität

Unsere Kompetenzen:

- > schnelle Reaktiong
- unbürokratische Abwicklung
- kompetenter Kontakt

Ihre Vorteile:

- > lückenlose Wartungsdokumentation
- umfassende Kundenberatung
- im Rahmen einer technischen Abstimmung ist ein Einsatz unserer Monteure vor Ort möglich

Ersatzteilversorgung

Mit Originalen fährt man immer besser

Unsere Kompetenzen:

- langfristig wirtschaftlicher
- hohe Standzeiten
- > lange Lebensdauer durch perfekt aufeinander abgestimmte Einzelkomponenten

Ihre Vorteile

- > weltweit über 3.200 Servicestationen mit BPW Originalteilen
- > individuelle Ersatzteilliste und Zeichnung
- ersatzteilgruppen für Standardprodukte
- jede Achse und jedes Fahrwerk werden dokumentiert, so ist jede Komponente einfach zu identifizieren

118 | Technik und Support

BPW Engineering, Innovation, Testzentrum

Wir arbeiten für Sie

Schon seit mehr als zwei Jahrzehnten übernimmt BPW Hungaria Konstruktionsverantwortung für Agrarprodukte. In dieser Zeit haben wir kontinuierlich die Zuverlässigkeit und das Qualitätsniveau unserer Produkte erhöht und neue Wege im vielseitigen Agrarbereich eingeschlagen.

Heute arbeiten 44 hochqualifizierte Ingenieure an der Entwicklung von neuen Achsen, Aggregaten und Zubehör, unterstützt von der modernsten 3D-Technologie und numerischen Simulationen.

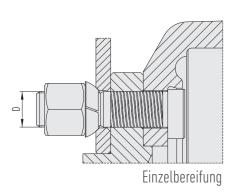
Wir glauben an Innovation und sind davon überzeugt, dass ein zielbewusster Mensch und eine perfekt auf ihre Arbeit abgestimmte Maschine eine Einheit bilden können, für die nichts unmöglich ist. Deswegen sind wir immer offen für neue Ideen, konzentrieren uns auf kundenorientierte Produktentwicklung und unterstützen Einzelprodukte – perfekt angepasst an die modernen Herausforderungen.

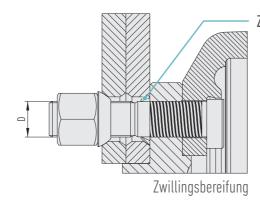
Wir verfügen über ein Testzentrum mit mehr als 1.000 m² Grundfläche. Seit der Übergabe im Jahr 2017 können wir unsere Produkte mit neuer Intensität testen.

Sechs Ingenieure aus der Entwicklungsabteilung führen Tests wie die folgenden durch:

- > Bremsenprüfungen die entsprechenden Gutachten erfüllen für alle Prüfbereiche die Anforderungen sowohl nationaler, europäischer als auch internationaler Prüfstellen
- > Festigkeitsprüfungen auf der speziellen Hydropulsinsel
- Funktionelle Corner Konditionstest und Kleintestbereich
- > Fahrzeugtests, auch für komplette Fahrzeughomologation

Unsere zukunftsweisenden patentierten Lösungen zeigen unseren Erfolg und unsere Fachkenntnisse.

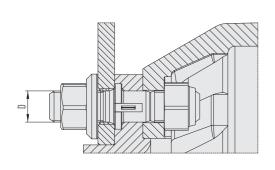


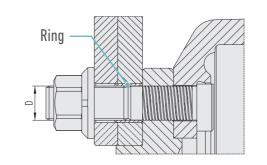

120 | Technik und Support

Montageanweisung für Räder

Bolzenzentrierung

Die Zentrierung und Fixierung des Rades erfolgt über die Kugelbeilagscheibe. Das Loch der Felge muss eine konische Einkerbung haben, damit die Beilagscheibe mit der Hilfe der konischen Form zentriert werden kann.



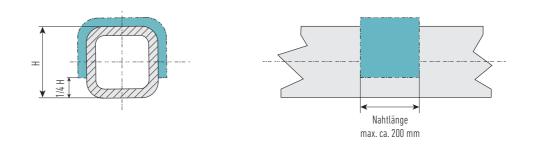


Zusatzscheibe für Zentrierung

Mittenzentrierung

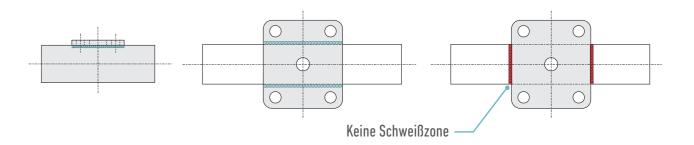
Die Zentrierung wird über das Mittenloch gewährleistet, die Befestigungslöcher haben keinerlei Zentrierfunktion. Bei Montage des Rades sollen zwei Ringe verwendet werden, um das Spiel zwischen Radbolzen und Radloch zu vermindern und dadurch die Montage zu erleichtern.

Einzelbereifung

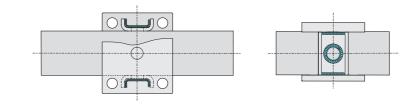

Zwillingsbereifung

Gewinde (D) mm	Schlüsselweite mm	Anziehdrehmoment mm	Radbefestigung
M18 x 1,5	24	270 (250—290)	Bolzenzentrierung
M20 x 1,5	27	380 (360—400)	Bolzenzentrierung
M22 x 1,5	32	510 (485—535)	Bolzenzentrierung
M22 x 1,5	32	630 (600—660)	Bolzenzentrierung

Schweißrichtlinien für Achskörper


Beim Einbau von Anhängerachsen kann es erforderlich sein, nachträglich Bauteile an die Achskörper anzuschweißen. BPW Achsen sind daher aus schweißbarem Material hergestellt. Die Achskörper müssen vor dem Schweißen nicht vorgewärmt werden.

Das Schweißen darf nicht im unteren Zugbereich des Achskörpers erfolgen.


Massivachsen

Die Platte ist direkt auf den Achskörper geschweißt. Querschweißungen sind verboten.

Hohlprofilachsen

Die Achsplatten sind nicht direkt auf den Achskörper geschweißt. Die Zusatzplatte oder Stütze muss verwendet werden wie abgebildet.

Für weitere Schweißrichtlinien und Schweißverfahren sollten Sie Rücksprache mit BPW halten.

Montageanweisung für Räder | 123

BPW Bremszylinder

Die beste Lösung für Bremsen

Bei einem Bremssystem ist das optimale Zusammenspiel der einzelnen Komponenten von größter Bedeutung. Die Bremszylinder übernehmen dabei eine entscheidende Rolle, denn sie müssen für die perfekt dosierte Kraftübertragung im Bremssystem sorgen.

BPW entwickelt und produziert eigene Bremszylinder für Trommelbremsen – ein weiterer Beleg für unsere umfassende Kompetenz in Sachen Bremsen.

Möglichkeiten für BPW Bremszylinder

 Sie wirken als Betriebsbremse und zeichnen sich durch geringe Außenabmessungen und niedriges Gewicht aus. Sie wirken sowohl als Betriebsals auch als Hilfs- und Feststellbremse.

Erreichbare Typen				
Membranzylinder	Federspeicherzylinder			
12"	-			
16"	16/24"			
20"	20/30"			
24"	24/30"			
30"	30/30"			
36"				
36L" – Langhubzylinder	-			

Vorteile, die überzeugen

- > Dauerhaft hohe Qualität durch Tests und ständige Qualitätskontrollen: FMEA, Maßprüfung, Lösedruckprüfung, Funktionstest am Fahrzeug, Vibrationstest, Schmutztest, Dauerfestigkeitsprüfungen mit über einer Million Bremszyklen, Kalt- und Warmtest (-40 °C, +80 °C), Kraftabgabekontrolle
- > Verbesserte Abdichtung durch Bördeltechnik
- > Optimaler Korrosionsschutz der Gehäusebauteile durch verschiedene hochwertige Beschichtungsverfahren
- > Zoll- und metrische Anschlüsse lieferbar
- > Montagefreundlich durch Druckluftanschlussverlängerung (serienmäßig bei Federspeicherzylindern für Scheibenbremsen)
- > Optimaler Korrosionsschutz der Feder durch doppelte Beschichtung
- > ECE-Gutachten und Prüfberichte sind auf der BPW Website verfügbar

Hydraulischer Bremszylinder

In vielen Ländern Europas ist ein hydraulisches Bremssystem bei Fahrzeugen bis zu einer Höchstgeschwindigkeit von 25 km/h Standard. BPW Achsen sind generell für den Einbau und die Ansteuerung der Bremse über einen hydraulischen Bremszylinder geeignet. Der hydraulische Bremszylinder wird mittels eines Adapters auf der standardmäßigen Grundplatte montiert. Hydraulische BPW Bremszylinder besitzen eine Freigabe der CEMAGREF/UTAC in Frankreich.

Erreichbare Typen

Kolbendurchmesser (mm)	Außendurchmesser mm)	Hub (mm)	CEMAGREF/UTAC- Prüfprotokollnummer
20	40	100	14956
25	40	100	15352
30	45	100	15351
35	50	110	18/06368
40	55	100	18/06369

Vorteile, die überzeugen

- > CEMAGREF/UTAC-geprüfte Zylinder (erforderlich für den französischen Markt)
- > Einfache Montage auf der standardmäßigen Grundplatte durch spezielle Adapter
- > BPW Bremsberechnung zur Auslegung der Bremsanlage

124 | Technik und Support

Mechanischer Lastabhängiger Bremskraftregler

Die einzigartige Lösung nach EU Regelung 2015/68 gestellten Anforderungen

Mechanischer Lastabhängiger Bremskraftregler (MLB) zum Einstellen des Druckwertes bei Bremsbetätigung von ungefederten Anhängerfahrzeugen.

Weitere infos: www.bpwagrar.com/MLB

100% Abgedeckt mit nur einer Homologation


Vorteile, die überzeugen

> Breiter Anwendungsbereich

Geeignet für alle ungefederten Agraranhänger bis 30 oder 40 km/h, die aus technischen Gründen nicht mit einem selbsttätigen lastabhängigen Bremskraftregler ausgestattet werden können.

Ausgezeichnete Wirtschaftlichkeit

Mit einem mit MLB ausgestatten Bremssystem kann eine ganze Fahrzeugserie (verschiedene Ausführungen mit verschiedene Fahrzeuggewichte und Bereifung) abgedeckt und homologiert werden.

> EU-konform

Vollständige Erfüllung der vorgeschriebenen Kompatibilitätsanforderungen dank proportionaler Druckregelung.

> Leichte Bedienung

Sicheres und einfaches Einstellen von Stufen dank spezieller Vierkantlöcher sowie Begrenzbarkeit und Einstellmöglichkeit von nötigen Stufenbereichen.

> Funktionssicherheit

End-of-Line-Test: Vor der endgültigen Fixierung der Programmscheibe werden bei jedem einzelnen Stück die Druckwerte für entsprechende Stellpositionen voreingestellt, und danach wird jede Stufe

Die Programmscheibe kann an die individuellen Anforderunger des Fahrzeugherstellers angepasst werden.

Ersatzteile von BPW

Mit Originalen fährt man besser

BPW ist weltweit Maßstab für kompromisslose Spitzenerzeugnisse, die höchsten Ansprüchen an Qualität und Zuverlässigkeit gerecht werden. BPW Originalteile sind Markenprodukte direkt vom Hersteller. In ihnen stecken deshalb dieselbe Kompetenz und Qualität wie in unseren Neuteilen. BPW Originalteile werden ständig weiterentwickelt und bieten Ihnen die Sicherheit, dass sie exakt auf Ihr Fahrwerksystem abgestimmt sind. Maximale Laufleistung ist garantiert.

Schnelle Lieferzeiten im BPW Netzwerk

BPW Originalteile bekommen Sie weltweit — in über 3.200 BPW Servicestationen. Unser Logistikkonzept ist auf schnellen Bedarf ausgelegt und liefert mitunter auch über Nacht. Damit Sie schnell wieder unterwegs sind.

Damit Sie das passende Ersatzteil erhalten, nehmen wir es schon in der Fertigung ganz genau: Jede Achse und jedes Fahrwerk wird dokumentiert — diese Daten werden mindestens zehn Jahre gespeichert. So ist jede Komponente achsen- und fahrwerksspezifisch identifizierbar. Und Sie erhalten schnellstmöglich das richtige Ersatzteil.

Ersatzteilstücklistensuche: www.bpw.de/mybpw

Vorteile, die überzeugen

- > Langfristig wirtschaftlicher
- > Hohe Standzeiten
- > Lange Lebensdauer und Sicherheit durch perfekt aufeinander abgestimmte Einzelkomponenten (kompatibel und passgenau)
- > Geringe Stillstandzeiten
- > Vorbildliche europaweite Ersatzteilverfügbarkeit

126 | Technik und Support Mechanischer Lastabhängiger Bremskraftregler | 127

Marken der BPW Gruppe

Das Netzwerk der Kompetenz

In der Welt von Transport und Logistik hängt alles mit allem zusammen. Die BPW Gruppe ist ein weltweites Netzwerk führender Spezialisten in Forschung und Entwicklung, industrieller Produktion und Vertrieb – für alle Aufgaben, die Fahrzeughersteller und -betreiber bewegen: heute, morgen und übermorgen.

Alles, was einen Trailer in Bewegung bringt, digital vernetzt, sichert und beleuchtet, kommt von den Marken der BPW Gruppe: BPW, Ermax, HBN-Teknik, Hestal und idem telematics.

we think transport

In der BPW Gruppe ist es unser Ziel, unsere Kunden in der Transport- und Logistikbranche so gut wie möglich zu unterstützen. Deshalb haben wir Ihre Bedarfe als höchste Priorität. Dazu kommt, dass wir unsere Lösungen an Ihre individuellen Wünsche anpassen, und wir sind mit Beratung und Betreuung immer für Sie da.

Diese Partnerschaft bedeutet für uns in der BPW Gruppe: we think transport.

Ermax

Ihr Partner für komplette Beleuchtungssysteme

ERMAX A/S entwickelt, produziert und verkauft eine breite Palette von Produkten in den Bereichen Beleuchtung, Sammelbox und Kabelsysteme für schwere Fahrzeuge und Agrarmaschinen. Dank einer Kombination aus Eigenproduktion in Dänemark und Lizenzherstellung eigener Werkzeuge bei ausgewählten und exklusiv zertifizierten Geschäftspartnern auf der ganzen Welt bieten wir eine große Auswahl an Qualitätsprodukten an.

SCAN MICH

HBN-Teknik

Ihr Experte für Verbundwerkstoffe

HBN-Teknik A/S ist einer der weltweit führenden Entwickler und Hersteller von Verbundwerkstofflösungen für die Automobilindustrie. Als Pionier der Spritzgießtechnik vereinen wir ein einmaliges Fachwissen in den Bereichen Leichtbauweise, Strukturanalyse, Herstellungsprozesse und Prüfung von Materialien und Produkten. Da wir uns schon lange der fortlaufenden Innovation verschrieben haben, konnten wir unser Produktportfolio auf Hightech-Bereiche ausdehnen, die bislang von Komponenten aus Stahl oder Aluminium dominiert wurden.

Hestal

Locks your load best

F. Hesterberg & Söhne GmbH & Co. KG ist einer der international führenden Hersteller und Anbieter von Verschließ- und Aufbautentechnik. Menschen in aller Welt vertrauen unseren Produkten, weil sie sich auf sie verlassen können. Unser Angebot reicht dabei von qualitativ hochwertigen Komponenten (wie z. B. Verschlüsse, Scharniere und Rungen) bis hin zu maßgeschneiderten Systemlösungen (wie z. B. komplette Aluminiumaufbauten für Pritschen- und Curtainsider-Fahrzeuge).

idem telematics

Hersteller von Telematiksystemen

idem telematics ist einer der führenden Hersteller von Telematiksystemen zur präzisen Steuerung mobiler Einheiten und deren Eingliederung in die Geschäftsprozesse zukunftsorientierter Transport- und Logistikunternehmen. Als führender Telematikpartner Europas unterstützt idem telematics Speditionen, Flottenbetreiber oder Verlader darin, ihr Kerngeschäft kontinuierlich zu verbessern.

128 | Technik und Support Marken der BPW Gruppe | 129

Immer nah dran

Die weltweiten BPW Tochtergesellschaften und Vertretungen

Ob in Europa oder in Übersee — wer mit einem Fahrwerksystem von BPW unterwegs ist, hat immer einen zuverlässigen Partner an seiner Seite. Denn unsere weltweiten Tochterunternehmen und Vertretungen sorgen dafür, dass für Sie alles bestens läuft. Verlassen Sie sich drauf.

www.bpw.de/service/kontakt/bpw-tochtergesellschaften

Europa				
Baltikum	Finnland	Niederlande	Schweiz	
SIA XL Parts	BPW Kraatz Oy	BPW BENELUX Sprl	Fahrzeugbedarf AG	
Baltics	Espoo	ST Eindhoven	Horgen	
www.xlpartsbaltics.lv	www.kraatz.fi	www.bpw-benelux.nl	www.fbh.ch	
Belgien	Frankreich BPW France S.A.S. Paris Nord www.bpwfrance.fr	Österreich	Spanien	
BPW BENELUX Sprl		Fahrzeugbedarf Kotz & Co.	BPW Trapaco, S.L.	
Herstal		Guntramsdorf	Madrid	
www.bpw-benelux.be		www.fahrzeugbedarf.at	www.bpw.es	
Bulgarien	Ireland Transpec Limited Dublin www.bpw.co.uk	Polen	Tschechische Republik	
Stankoff Ltd.		BPW Polska Sp. z o.o.	BPW spol. s r. o.	
Sofia		Lomianki	Brandýs nad Labem	
www.stankoff-bg.com		www.bpw.pl	www.bpw.cz	
Dänemark Besko A/S Kolding www.besko.dk	Italien BPW Italia s.r.l. Verona www.bpwitalia.it	Rumänien Auto Brand S.R.L. Bragadiru www.autobrand.ro	Türkei BPW Otomotiv A.S. Levent-Istanbul	
Deutschland BPW Bergische Achsen KG Wiehl www.bpw.de	Kasachstan	Russland	Ukraine	
	000 BPW-Ost	000 BPW-Ost	000 BPW-Ost	
	Almaty	Moskau	Kiev	
	www.bpw-ost.ru	www.bpw-ost.ru	www.bpw-ost.ru	
England BPW Limited Leicester www.bpw.co.uk	Norwegen	Schweden	Ungarn	
	BPW Hofstad A/S	FOMA	BPW-Hungária Kft.	
	Oslo	Ängelholm	Szombathely,	
	www.bpw.no	www.foma.se	www.bpw-hungaria.hu	

Singapur BPW Asia Pte Ltd Singapore www.bpw.sg
Südafrika BPW Axles (Pty) Ltd. Johannesburg www.bpw.co.za
Thailand BPW Asia Pte Ltd Rayong www.bpw.sg

130 | Technik und Support

BPW Customised Solution **Bestelldatenblatt**

Agrar Katalog

Kunde:		Bestellung	
BPW Ansprechpartner:		Angebot	
Jahresbedarf:			
Fahrzeugtyp:		-	
gewünschte Achslast:	kg		
Geschwindigkeit:	km/h		
Reifengröße:		-	
Achsencode			
Spur:	mm		
FM:	mm		
GM:	mm		
Sonstiges*:			
-			
* w.z.B ausgewählte Grundplattepo	osition bei AGRO Turn Lenkachse		
Aggregatcode			
Spur:	mm		
FM:	mm		
Sonstiges:			
Auflaufeinrichtungscod	e		
Sonstiges:			
-			

Die Marken der BPW Gruppe:

Postfach 12 80 · 51656 Wiehl, Deutschland · Telefon +49 (0) 2262 78-0

 $info@bpw.de \cdot \textbf{www.bpw.de} \cdot \textbf{www.bpwagrar.com}$